Synlett 2017; 28(17): 2230-2240
DOI: 10.1055/s-0036-1590827
account
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Cyclic and Heterocyclic Compounds via Gold-Catalyzed Reactions

Qiang Wang, Min Shi*
  • State Key Laboratory of Organometallic Chemistry, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: mshi@mail.sioc.ac.cn
We are grateful for the financial support from the National Basic Research Program of China (973)-2015CB856603, the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB20000000, and the National Natural Science Foundation of China (20472096, 21372241, 21572052, 20672127, 21421091, 21372250, 21121062, 21302203, and 20732008).
Further Information

Publication History

Received: 21 May 2017

Accepted after revision: 13 June 2017

Publication Date:
27 July 2017 (eFirst)

Abstract

This account outlines the latest advances from our group in the field of gold catalysis. A variety of cyclic and heterocyclic compounds, containing different sized skeletons, are synthesized selectively by fine-tuning the substrates, catalysts, and ligands. Au(I)/Au(III) redox catalysis is applied in our latest work through adding external oxidation. The reaction mechanisms are discussed in detail. Moreover, the photoredox catalytic process is also introduced briefly, which opens avenues for the development of new strategies in gold chemistry.

1 Introduction

2 Gold-Catalyzed Cycloisomerization of Enynes

3 Gold-Catalyzed Intramolecular Cyclization of Propargylic Ester Substrates

4 Gold-Catalyzed C(sp3)–H Functionalizations

5 The Au(I)/Au(III) Redox Catalytic Cycle

6 Conclusion

 
  • References

    • 1a Qian D. Zhang J. Chem. Soc. Rev. 2015; 44: 677
    • 1b Wei Y. Shi M. ACS Catal. 2016; 6: 2515
    • 1c Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 1d Yang W. Hashmi AS. K. Chem. Soc. Rev. 2014; 43: 2941
    • 1e Fürstner A. Acc. Chem. Res. 2014; 47: 925
    • 1f Fensterbank L. Malacria M. Acc. Chem. Res. 2014; 47: 953
    • 1g Hashmi AS. K. Chem. Rev. 2007; 107: 3180
    • 1h Krause N. Winter C. Chem. Rev. 2011; 111: 1994
    • 1i Corma A. Leyva-Pérez A. Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 1j Nolan SP. Acc. Chem. Res. 2011; 44: 91
    • 1k Rudolph M. Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 1l Liu L.-P. Hammond GB. Chem. Soc. Rev. 2012; 41: 3129
  • 2 Bratsch SG. J. Phys. Chem. Ref. Data 1989; 18: 1
  • 3 Miró J. del Pozo C. Chem. Rev. 2016; 116: 11924
    • 4a Schuler M. Silva F. Bobbio C. Tessier A. Gouverneur V. Angew. Chem. Int. Ed. 2008; 47: 7927
    • 4b Hopkinson MN. Ross JE. Giuffredi GT. Gee AD. Gouverneur V. Org. Lett. 2010; 12: 4904
    • 4c Hopkinson MN. Tessier A. Salisbury A. Giuffredi GT. Combettes LE. Gee AD. Gouverneur V. Chem. Eur. J. 2010; 16: 4739
    • 4d Hopkinson MN. Giuffredi GT. Gee AD. Gouverneur V. Synlett 2010; 2737
    • 5a Peng Y. Cui L. Zhang G. Zhang L. J. Am. Chem. Soc. 2009; 131: 5062
    • 5b Zhang G. Peng Y. Cui L. Zhang L. Angew. Chem. Int. Ed. 2009; 48: 3112
    • 5c Zhang G. Cui L. Wang Y. Zhang L. J. Am. Chem. Soc. 2010; 132: 1474
    • 5d Zhang G. Luo Y. Wang Y. Zhang L. Angew. Chem. Int. Ed. 2011; 50: 4450
    • 6a Brenzovich WE. Benitez D. Lackner AD. Shunatona HP. Tkatchouk E. Goddard WA. Toste FD. Angew. Chem. Int. Ed. 2010; 49: 5519
    • 6b Melhado AD. Brenzovich Jr WE. Lackner AD. Toste FD. J. Am. Chem. Soc. 2010; 132: 8885
    • 6c Tkatchouk E. Mankad NP. Benitez D. Goddard III WA. Toste FD. J. Am. Chem. Soc. 2011; 133: 14293
    • 6d Brenzovich Jr WE. Brazeau JF. Toste FD. Org. Lett. 2010; 12: 4728
    • 7a de Haro T. Nevado C. Adv. Synth. Catal. 2010; 352: 2767
    • 7b de Haro T. Nevado C. Angew. Chem. Int. Ed. 2011; 50: 906
    • 7c de Haro T. Nevado C. Chem. Commun. 2011; 47: 248
    • 8a Wang W. Jasinski J. Hammond GB. Xu B. Angew. Chem. Int. Ed. 2010; 49: 7247
    • 8b Jin Z. Hidinger R. Xu B. Hammond GB. J. Org. Chem. 2012; 77: 7725
    • 8c Kumar M. Scobie M. Mashuta MS. Hammond GB. Xu B. Org. Lett. 2013; 15: 724
    • 8d Malhotra D. Liu L. Wang W. Durham M. Hammond GB. Xu B. J. Fluorine Chem. 2014; 167: 179
    • 9a Qian J. Liu Y. Zhu J. Jiang B. Xu Z. Org. Lett. 2011; 13: 4220
    • 9b Liu Y. Zhu J. Qian J. Xu Z. J. Org. Chem. 2012; 77: 5411
    • 9c Liu Y. Chen X. Zhang J. Xu Z. Synlett 2013; 1371
    • 10a Ball LT. Green M. Lloyd-Jones GC. Russell CA. Org. Lett. 2010; 12: 4724
    • 10b Simonneau A. Garcia P. Goddard JP. Mouries-Mansuy V. Malacria M. Fensterbank L. Beilstein J. Org. Chem. 2011; 7: 1379
    • 10c Lin R. Ding S. Shi Z. Jiao N. Org. Lett. 2011; 13: 4498
    • 10d Leyva-Pérez A. Doménech A. Al-Resayes SI. Corma A. ACS Catal. 2012; 2: 121
    • 10e Arcadi A. Pietropaolo E. Alvino A. Michelet V. Org. Lett. 2013; 15: 2766
    • 10f Li S. Li Z. Yuan Y. Li Y. Zhang L. Wu Y. Chem. Eur. J. 2013; 19: 1496
    • 10g Zhang R. Xu Q. Chen K. Gu P. Shi M. Eur. J. Org. Chem. 2013; 7366
    • 10h Geng C. Zhu R. Li M. Lu T. Wheeler SE. Liu C. Chem. Eur. J. 2014; 20: 15833
    • 10i Arcadi A. Pietropaolo E. Alvino A. Michelet V. Beilstein J. Org. Chem. 2014; 10: 449
    • 10j Jeong Y. Kim B.-I. Lee JK. Ryu J.-S. J. Org. Chem. 2014; 79: 6444
    • 11a Hopkinson MN. Tlahuext-Aca A. Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 11b Zhang M. Zhu C. Ye L.-W. Synthesis 2017; 49: 1150
    • 12a Dorel R. Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 12b Jia M. Bandini M. ACS Catal. 2015; 5: 1638
    • 12c Qian D. Zhang J. Chem. Soc. Rev. 2015; 44: 677
    • 12d Obradors C. Echavarren AM. Chem. Commun. 2014; 50: 16
    • 12e Obradors C. Echavarren AM. Acc. Chem. Res. 2014; 47: 902
  • 13 Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 14a Walczak MA. A. Krainz T. Wipf P. Acc. Chem. Res. 2015; 48: 1149
    • 14b Jiao L. Yu Z.-X. J. Org. Chem. 2013; 78: 6842
    • 14c Shi M. Lu J.-M. Wei Y. Shao L.-X. Acc. Chem. Res. 2012; 45: 641
    • 14d Lu B.-L. Dai L. Shi M. Chem. Soc. Rev. 2012; 41: 3318
  • 15 Chen G.-Q. Fang W. Wei Y. Tang X.-Y. Shi M. Chem. Sci. 2016; 7: 4318
  • 16 Chen G.-Q. Fang W. Wei Y. Tang X.-Y. Shi M. Chem. Commun. 2016; 52: 10799
    • 17a Zhang D.-H. Tang X.-Y. Shi M. Acc. Chem. Res. 2014; 47: 913
    • 17b Yuan W. Tang X.-Y. Wei Y. Shi M. Chem. Eur. J. 2014; 20: 3198
    • 17c Stepakov AV. Larina AG. Boitsov VM. Gurzhiy VV. Molchanov AP. Kostikov RR. Tetrahedron Lett. 2014; 55: 2022
    • 17d Miao M.-Z. Cao J. Zhang J.-J. Huang X. Wu L.-L. J. Org. Chem. 2013; 78: 2687
  • 18 Li D. Wei Y. Marek I. Tang X.-Y. Shi M. Chem. Sci. 2015; 6: 5519
    • 19a Amijs CH. M. López-Carrillo V. Raducan M. Pérez-Galán P. Ferrer C. Echavarren AM. J. Org. Chem. 2008; 73: 7721
    • 19b Wang Y. McGonigal PR. Herle B. Besora M. Echavarren AM. J. Am. Chem. Soc. 2014; 136: 801
    • 19c Benitez D. Shapiro ND. Tkatchouk E. Wang Y. Goddard WA. Toste FD. Nat. Chem. 2009; 1: 482
    • 19d Uemura M. Watson ID. G. Katsukawa M. Toste FD. J. Am. Chem. Soc. 2009; 131: 3464
    • 19e Ye L. Cui L. Zhang G. Zhang L. J. Am. Chem. Soc. 2010; 132: 3258
    • 19f Ye L. He W. Zhang L. J. Am. Chem. Soc. 2010; 132: 8550
    • 19g Santos MD. Davies PW. Chem. Commun. 2014; 50: 6001
  • 20 Li D.-Y. Wei Y. Shi M. Adv. Synth. Catal. 2016; 358: 3002
    • 21a Brandi A. Cicci S. Cordero FM. Goti A. Chem. Rev. 2014; 114: 7317
    • 21b Shi M. Shao L.-X. Lu J.-M. Wei Y. Mizuno K. Maedo H. Chem. Rev. 2010; 110: 5883
  • 22 Fang W. Tang X.-Y. Shi M. RSC Adv. 2016; 6: 40474
    • 23a Shiroodi RK. Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
    • 23b Shu X.-Z. Shu D. Schienebeck CM. Tang W. Chem. Soc. Rev. 2012; 41: 7698
    • 24a Yang J.-M. Tang X.-Y. Shi M. Chem. Eur. J. 2015; 21: 4534
    • 24b Zhang Z. Shi M. Chem. Eur. J. 2012; 18: 3654
    • 24c Zhang D.-H. Yao L.-F. Wei Y. Shi M. Angew. Chem. Int. Ed. 2011; 50: 2583
  • 25 Yang J.-M. Li P.-H. Wei Y. Tang X.-Y. Shi M. Chem. Commun. 2016; 52: 346
  • 26 Zhu P.-L. Tang X.-Y. Shi M. ChemistryOpen 2016; 5: 33
  • 27 Li D.-Y. Fang W. Shi M. Chem. Eur. J. 2016; 22: 18080
  • 28 Wang Q. Jiang Y. Sun R. Tang X.-Y. Shi M. Chem. Eur. J. 2016; 22: 14739
  • 29 Sahoo B. Hopkinson MN. Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
  • 30 Wang Q. Tang X.-Y. Shi M. Angew. Chem. Int. Ed. 2016; 55: 10811