Synlett 2017; 28(20): 2833-2838
DOI: 10.1055/s-0036-1590832
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylative Cross-Coupling Reaction between Aryl(Heteroaryl) Iodides and Tricyclopropylbismuth: Expedient Access to Aryl Cyclopropylketones

Emeline Benoit, Julien Dansereau, Alexandre Gagnon*
  • Département de Chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8, Canada   Email: gagnon.alexandre@uqam.ca
This work was supported by a provincial Fonds de Recherche du Québec, Nature et Technologies (FRQNT) team grant and by the Centre in Green Chemistry and Catalysis (CGCC).
Further Information

Publication History

Received: 24 May 2017

Accepted after revision: 20 June 2017

Publication Date:
19 July 2017 (eFirst)

Dedicated to Professor Victor Snieckus on the occasion of his 80th birthday

Abstract

The carbonylative cross-coupling reaction between aryl and heteroaryl iodides and tricyclopropylbismuth is reported. The reaction is catalyzed by (SIPr)Pd(allyl)Cl, a NHC-palladium(II) catalyst, operates under 1 atm of carbon monoxide and tolerates a wide range of functional groups. The use of lithium chloride was found to provide higher yields of the desired aryl cyclopropylketones. The conditions were also applied to the carbonylative cross-coupling of an iodoalkene to afford the corresponding alkenyl cyclopropylketone.

Supporting Information

 
  • References and Notes

  • 1 Tamaki T. Ohashi M. Ogoshi S. Angew. Chem. Int. Ed. 2011; 50: 12067
    • 2a Liu L. Montgomery J. J. Am. Chem. Soc. 2006; 128: 5348
    • 2b Tamaki T. Nagata M. Ohashi M. Ogoshi S. Chem. Eur. J. 2009; 15: 10083
    • 2c Ogoshi S. Nagata M. Kurosawa H. J. Am. Chem. Soc. 2006; 128: 5350
  • 3 De Simone F. Waser J. Chimia 2009; 63: 162
  • 4 Blake KW. Gillies I. Denney RC. J. Chem. Soc., Perkin Trans 1 1981; 700
  • 5 Degueil-Castaing M. Rahm A. J. Org. Chem. 1986; 51: 1672
    • 6a Enholm EJ. Jia ZJ. J. Org. Chem. 1997; 62: 5248
    • 6b Enholm EJ. Jia ZJ. J. Org. Chem. 1997; 62: 9159
  • 7 Yang Y.-H. Shi M. J. Org. Chem. 2005; 70: 10082
  • 8 Shi M. Yang Y.-H. Xu B. Tetrahedron 2005; 61: 1893
    • 9a Bertozzi F. Gustafsson M. Olsson R. Org. Lett. 2002; 4: 3147
    • 9b Bertozzi F. Gustafsson M. Olsson R. Org. Lett. 2002; 4: 4333
    • 9c Bertozzi F. Gundersen BV. Gustafsson M. Olsson R. Org. Lett. 2003; 5: 1551
  • 10 Shi M. Yang Y.-H. Xu B. Synlett 2004; 1622
  • 11 Barluenga J. Martinez-Gallo JM. Najera C. Yus M. Synthesis 1987; 582
  • 12 Sumida Y. Yorimitsu H. Oshima K. J. Org. Chem. 2009; 74: 3196
  • 13 Ranaweera RA. A. U. Weragoda GK. Bain J. Watanabe S. Abe M. Gudmundsdottir AD. Phys. Org. Chem. 2014; 137
  • 14 Han Z. Uehira S. Tsuritani T. Shinokubo H. Oshima K. Tetrahedron 2001; 57: 987
  • 15 Salikov RF. Belyy AY. Tomilov YV. Tetrahedron Lett. 2014; 55: 5936
    • 16a Zaragoza F. Stephensen H. Peschke B. Rimvall K. J. Med. Chem. 2005; 48: 306
    • 16b Eleni P. Dimitra J.-L. J. Biomol. Struct. Dyn. 2017; 35: 968
  • 17 Shi W. Dan W.-J. Tang J.-J. Zhang Y. Nandinsuren T. Zhang A.-L. Gao J.-M. Bioorg. Med. Chem. Lett. 2016; 26: 2156
  • 18 Bisht SS. Dwivedi N. Chaturvedi V. Anand N. Misra M. Sharma R. Kumar B. Dwivedi R. Singh S. Sinha SK. Gupta V. Mishra PR. Dwivedi AK. Tripathi RP. Eur. J. Med. Chem. 2010; 45: 5965
  • 19 Lombardo M. Bender K. London C. Kirkland M. Mane J. Pachanski M. Geissler W. Cummings J. Habulihaz B. Akiyama TE. Di Salvo J. Madeira M. Pols J. Powles MA. Finley MF. Johnson E. Roussel T. Uebele VN. Crespo A. Leung D. Alleyne C. Trusca D. Lei Y. Howard AD. Ujjainwalla F. Tata JR. Sinz CJ. Bioorg. Med. Chem. Lett. 2016; 26: 5724
  • 20 Ettaoussi M. Pérès B. Errazani A. Boutin JA. Caignard D.-H. Delagrange P. Melnyk P. Berthelot P. Yous S. Eur. J. Med. Chem. 2015; 90: 822
    • 21a Handlon AL. Schaller LT. Leesnitzer LM. Merrihew RV. Poole C. Ulrich JC. Wilson JW. Cadilla R. Turnbull P. ACS Med. Chem. Lett. 2016; 7: 83
    • 21b Nandinsuren T. Shi W. Zhang A.-L. Bai Y.-B. Gao J.-M. Nat. Prod. Res. 2016; 30: 1166
  • 22 Castelló-Micó A. Herbert SA. León T. Bein T. Knochel P. Angew. Chem. Int. Ed. 2016; 55: 401
  • 23 Alonso F. Lorenzo E. Yus M. J. Org. Chem. 1996; 61: 6058
    • 24a Cowart M. Faghih R. Curtis MP. Gfesser GA. Bennani YL. Black LA. Pan L. Marsh KC. Sullivan JP. Esbenshade TA. Fox GB. Hancock AA. J. Med. Chem. 2005; 48: 38
    • 24b Olah GA. Prakash GK. S. Arvanaghi M. Synthesis 1984; 228
  • 25 Gfesser GA. Faghih R. Bennani YL. Curtis MP. Esbenhade TA. Hancock AA. Cowart MD. Bioorg. Med. Chem. Lett. 2005; 15: 2559
  • 26 Wang X. Liu M. Xu L. Wang Q. Chen J. Ding J. Wu H. J. Org. Chem. 2013; 78: 5273
    • 27a Wong Y.-C. Parthasarathy K. Cheng C.-H. Org. Lett. 2010; 12: 1736
    • 27b Wang X. Wang X. Liu M. Ding J. Chen J. Wu H. Synthesis 2013; 45: 2241
    • 27c Das T. Chakraborty A. Sarkar A. Tetrahedron Lett. 2014; 55: 7198
  • 28 Wu J. Yang X. He Z. Mao X. Hatton TA. Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 8416
    • 29a Fujii K. Misaki T. Sugimura T. Chem. Lett. 2014; 43: 634
    • 29b Paxton RJ. Taylor RJ. K. Synlett 2007; 633
    • 30a Wu X.-F. Neumann H. Beller H. Chem. Soc. Rev. 2011; 40: 4986
    • 30b Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 30c Brunet J.-J. Chauvin R. Chem. Soc. Rev. 1995; 24: 89

      For reviews on organobismuth reagents, see:
    • 31a Gagnon A. Dansereau J. Le Roch A. Synthesis 2017; 49: 1707
    • 31b Condon S. Pichon C. Davi M. Org. Prep. Proced. Int. 2014; 46: 89
    • 31c Finet J.-P. Chem. Rev. 1989; 89: 1487
    • 31d Freedman LD. Doak GO. Chem. Rev. 1982; 82: 15
    • 32a Michaelis A. Polis A. Ber. Dtsch. Chem. Ges. 1887; 20: 54
    • 32b Michaelis A. Marquardt A. Justus Liebigs Ann. Chem. 1889; 251: 323
    • 33a Dünhaupt F. J. Prakt. Chem. 1854; 61: 399
    • 33b Dünhaupt F. Justus Liebigs Ann. Chem. 1854; 92: 371
  • 34 Marquardt A. Ber. Dtsch. Chem. Ges. 1887; 20: 1516
    • 35a Breed Dr. Justus Liebigs Ann. Chem. 1852; 82: 106
    • 35b Breed Dr. J. Prakt. Chem. 1852; 56: 341
  • 36 Abramovitch RA. Barton DH. R. Finet J.-P. Tetrahedron 1988; 44: 3039
    • 37a Shimada S. Rao ML. N. Top. Curr. Chem. 2012; 311: 199
    • 37b Rao ML. N. Venkatesh V. Dasgupta P. Tetrahedron Lett. 2010; 51: 4975
    • 37c Rao ML. N. Talode JB. Asian J. Org. Chem. 2016; 5: 98
    • 37d Rao ML. N. Venkatesh V. Jadhav DN. J. Organomet. Chem. 2008; 693: 2494
    • 37e Rao ML. N. Dhanorkar RJ. RSC Adv. 2016; 6: 1012
    • 37f Rao ML. N. Venkatesh V. Banerjee D. Tetrahedron 2007; 63: 12917
    • 37g Rao ML. N. Venkatesh V. Jadhav DN. Tetrahedron Lett. 2006; 47: 6975
    • 37h Rao ML. N. Jadhav DN. Venkatesh V. Tetrahedron Lett. 2009; 50: 4268
    • 38a Urgin K. Aubé C. Pichon C. Pipelier M. Blot V. Thobie-Gautier C. Léonel E. Dubreuil D. Condon S. Tetrahedron Lett. 2012; 53: 1894
    • 38b Urgin K. Aubé C. Pipelier M. Blot V. Thobie-Gautier C. Sengmany S. Lebreton J. Léonel E. Dubreuil D. Condon S. Eur. J. Org. Chem. . 2013, 117;
    • 38c Cassirame B. Condon S. Pichon C. J. Mol. Catal. A.: Chem. 2016; 425: 94
    • 38d Kutudila P. Linguerri R. Al-Mogren MM. Pichon C. Condon S. Hochlaf M. Theor. Chem. Acc. 2016; 135: 176
    • 39a Wang T. Sang S. Liu L. Qiao H. Gao Y. Zhao Y. J. Org. Chem. 2014; 79: 608
    • 39b Kobiki Y. Kawaguchi S.-I. Ogawa A. Org. Lett. 2015; 17: 3490
    • 39c Matano Y. Imahori H. J. Org. Chem. 2004; 69: 5505
    • 39d Sueda T. Oshima A. Teno N. Org. Lett. 2011; 13: 3996
    • 39e Robertson AP. M. Burford N. McDonald R. Ferguson MJ. Angew. Chem. Int. Ed. 2014; 53: 3480
    • 40a Petiot P. Gagnon A. Heterocycles 2014; 88: 1615
    • 40b Petiot P. Gagnon A. Eur. J. Org. Chem. 2013; 5282
    • 40c Gagnon A. Albert V. Duplessis M. Synlett 2010; 2936
  • 41 Petiot P. Dansereau J. Gagnon J. RSC Adv. 2014; 4: 22255
    • 42a Ahmad T. Dansereau J. Hébert M. Grand-Maître C. Larivée A. Siddiqui A. Gagnon A. Tetrahedron Lett. 2016; 57: 4284
    • 42b Petiot P. Dansereau J. Hébert M. Khene I. Ahmad T. Samaali S. Leroy M. Pinsonneault F. Legault CY. Gagnon A. Org. Biomol. Chem. 2015; 13: 1322
    • 42c Crifar C. Petiot P. Ahmad T. Gagnon A. Chem. Eur. J. 2014; 20: 2755
  • 43 Hébert M. Petiot P. Benoit E. Dansereau J. Ahmad T. Le Roch A. Ottenwaelder X. Gagnon A. J. Org. Chem. 2016; 81: 5401
  • 44 Hao W. Liu H. Yin L. Cai M. J. Org. Chem. 2016; 81: 4244
  • 45 Dansereau J. Gautreau S. Gagnon A. ChemistrySelect 2017; 2: 2593
  • 46 Gagnon A. St-Onge M. Little K. Duplessis M. Barabé F. J. Am. Chem. Soc. 2007; 129: 44
  • 47 Gagnon A. Duplessis M. Alsabeh P. Barabé F. J. Org. Chem. 2008; 73: 3604
  • 48 Analytical Data for Compound 3 Pale yellow solid; Rf = 0.21 (10% EtOAc/hexane); mp 62.6 °C. 1H NMR (300 MHz, CDCl3): δ = 8.12 (d, J = 8.7 Hz, 2 H), 8.07 (d, J = 8.7 Hz, 2 H), 3.94 (s, 3 H), 2.71–2.62 (m, 1 H), 1.29–1.24 (m, 2 H), 1.11–1.05 (m, 2 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 200.4, 166.4, 141.4, 133.6, 129.9, 128.0, 52.6, 17.8, 12.3 ppm. IR (neat): 2953, 2852, 1720, 1667, 1439, 1407, 1278, 1216, 1107, 1016, 993, 720 cm–1. ESI-HRMS: m/z calcd for C12H12O3: 204.0786; found: 205.0855 [M + H]+.
  • 49 For all the details, see the Supporting Information.
  • 50 Andrus MB. Ma Y. Zang Y. Song C. Tetrahedron Lett. 2002; 43: 9137
  • 51 Method A A sealed tube equipped with a magnetic stirring bar was charged with the aryl halide 1 or 5 (1.0 equiv), Na2CO3 (2.0 equiv), anhydrous LiCl (2.0 equiv) and (SIPr)Pd(allyl)Cl (0.05 equiv). Tricyclopropylbismuth (2a, 1.0 equiv) was dissolved in anhydrous DMF (0.1 M) under argon and was added into the sealed tube. CO was bubbled in the reaction mixture for 45 s, then the tube was sealed and heated at 40 °C for 16 h. The reaction mixture was cooled to r.t., transferred in a separatory funnel containing 20 mL of an aq sat. NaHCO3 solution, and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the desired aryl cyclopropyl ketone 3 or 6.
  • 52 Method B Same as method A except that 1.5 equiv of tricyclopropylbismuth (2a) instead of 1.0 equiv and 0.1 equiv of (SIPr)Pd(allyl)Cl instead of 0.05 equiv were used, and that the reaction was heated at 80 °C instead of 40 °C.

    • For a review on arylcyclopropanes, see:
    • 53a Gagnon A. Duplessis M. Fader L. Org. Prep. Proced. Int. 2010; 42: 1
    • 53b Talele TT. J. Med. Chem. 2016; 59: 8712

      For selected examples of reactions involving alkenyl cyclopropylketones, see:
    • 54a Tsuge O. Kanemasa S. Otsuka T. Suzuki T. Bull. Chem. Soc. Jpn. 1988; 61: 2897
    • 54b De Simone F. Saget T. Benfatti F. Almeida S. Waser J. Chem. Eur. J. 2011; 17: 14527