Synlett 2017; 28(19): 2637-2641
DOI: 10.1055/s-0036-1590856
letter
© Georg Thieme Verlag Stuttgart · New York

Nef–Perkow–Mumm Cascade towards Imido Phosphate Derivatives

Aurélie Dos Santosa, Marie Cordierb, Laurent El Kaïm*a
  • aLaboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech – UMR 7652, Université Paris-Saclay, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr   Email: aurelie.dossantos@ensta-paristech.fr
  • bLaboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique – UMR 9168, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau, France
Further Information

Publication History

Received: 17 May 2017

Accepted after revision: 06 July 2017

Publication Date:
11 August 2017 (eFirst)

Abstract

A one-pot, four-component synthesis of imido phosphates has been achieved using a Nef–Perkow sequence followed by addition of carboxylic acid derivatives. The final imido moiety is formed via a Mumm rearrangement of an intermediate imidate.

Supporting Information

 
  • References and Notes


    • For reviews see:
    • 1a Dömling A. Chem. Rev. 2006; 106: 17
    • 1b Dömling A. Wang K. Wang W. Chem. Rev. 2012; 112: 3083
    • 1c Multicomponent Reactions in Organic Synthesis . Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim; 2014
    • 1d Boyarskiy VP. Bokach NA. Luzyanin KV. Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 1e Varadi A. Palmer TC. Dardashti RN. Majumdar S. Molecules 2016; 21: 19
    • 1f Giustiniano M. Basso A. Mercalli V. Massarotti A. Novellino E. Tron GC. Zhu J. Chem. Soc. Rev. 2017; 46: 1295
  • 2 Nef JU. Liebigs Ann. Chem. 1892; 270: 267

    • For a selection of applications, see:
    • 3a Ugi I. Fetzer U. Chem. Ber. 1961; 94: 1116
    • 3b Chen JJ. Deshpande SV. Tetrahedron Lett. 2003; 44: 8873
    • 3c Westling M. Smith R. Livinghouse T. J. Org. Chem. 1986; 51: 1159
    • 3d Livinghouse T. Tetrahedron 1999; 55: 9947
    • 3e Tian WS. Livinghouse T. J. Chem. Soc., Chem. Commun. 1989; 819
    • 3f El Kaïm L. Grimaud L. Wagschal S. Synlett 2009; 1315
    • 3g Dos Santos A. El Kaïm L. Grimaud L. Ronsseray C. Chem. Commun. 2009; 3907
    • 3h Mossetti R. Pirali T. Tron GC. Zhu J. Org. Lett. 2010; 12: 820
    • 3i Shaabani A. Mahyari M. Aghaei M. Keshipour S. Ng SW. Synlett 2013; 24: 1968

    • For a review and the Nef isocyanide reaction:
    • 3j La Spisa F. Tron GC. El Kaïm L. Synthesis 2014; 46: 829
  • 4 Coffinier D. El Kaïm L. Grimaud L. Org. Lett. 2009; 8: 1825
    • 5a Perkow W. Ullerich K. Meyer F. Naturwissenschaften 1952; 39: 353 ; Chem. Abstr. 1953, 47, 8248

    • For a review on the Perkow reaction, see:
    • 5b Lichtenthaler FW. Chem. Rev. 1961; 61: 607

    • For some recent Perkow-type reactions, see:
    • 5c Waszkuc W. Janecki T. Org. Biomol. Chem. 2003; 1: 2966
    • 5d Tarasenko KV. Gerus II. Kukhar VP. J. Fluorine Chem. 2007; 128: 1264
    • 5e Paleta O. Pomeisl K. Kafka S. Klasek A. Kubelka V. Beilstein J. Org. Chem. 2005; 1: 17
    • 5f Pomeisl K. Kvicala J. Paleta O. Klasek A. Kafka S. Kubelka V. Havlicek J. Cejka J. Tetrahedron 2007; 63: 10549
  • 6 Nucleophilic addition under neutral or basic conditions usually occurs on the carbonyl group leading to simple acid derivatives and recovery of the isocyanides: for amines, see ref. 1.
  • 7 Mumm O. Ber. Dtsch. Chem. Ges. 1910; 43: 886
  • 8 La Spisa F. Tron GC. Tetrahedron Lett. 2014; 55: 7060
  • 9 The Perkow reaction of α-dichloroketones often gives a mixture of isomeric cis- and trans-vinylphosphates: Borowitz IJ. Firstenberg S. Casper EW. R. Crouch RK. J. Org. Chem. 1971; 36: 3282
  • 10 CCDC 1550094 contains the supplementary crystallographic data for compound 4n. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 11a Coffinier D. El Kaïm L. Grimaud L. Synlett 2010; 2474
    • 11b Yavari I. Naeimabadi M. Hosseinpour R. Halvagar MR. Synlett 2016; 27: 2601
  • 12 Coffinier D. El Kaïm L. Grimaud L. Ruijter E. Orru RV. A. Tetrahedron Lett. 2011; 52: 3023
  • 13 Yavari I. Ghanbari E. Hosseinpour R. Helv. Chim. Acta 2014; 97: 1004
  • 14 CCDC 1550095 contains the supplementary crystallographic data for compound 6j. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 Nef–Perkow–Mumm Product 4a – Typical Procedure Under an argon atmosphere, a mixture of chloroacetyl chloride (80 μL, 1.0 mmol) and cyclohexyl isocyanide (124 μL, 1.0 mmol) was stirred at rt for 5 min. Then trimethyl phosphite (118 μL, 1.0 mmol) was added, and the mixture was stirred at rt for 5 min to afford the imidoyl chloride intermediate. To a 1.0 M solution of benzoic acid (122 mg, 1.0 mmol) in MeCN were added Na2CO3 (106 mg, 1.0 mmol) and the imidoyl chloride intermediate (formed in situ), and the mixture was stirred at 40 °C for 1 h. The resulting mixture was dissolved in DCM and washed with H2O. The organic layer was extracted, dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc/ DCM, 10:90) to afford 4a as yellow oil in 73% yield (278 mg, 0.73 mmol). Rf = 0.59 (DCM/EtOAc, 5:5). 1H NMR (400 MHz, CDCl3): δ = 7.63 (d, JHH = 8.1 Hz, 2 H), 7.52 (t, JHH = 7.3 Hz, 1 H), 7.41 (dd, JHH = 8.1, 7.3 Hz, 2 H), 5.43 (dd, JHH,HP = 3.0, 2.0 Hz, 1 H), 5.22 (dd, JHH,HP = 3.0, 2.0 Hz, 1 H), 4.42–4.34 (m, 1 H), 3.70 (d, JHP = 11.4 Hz, 6 H), 2.11–2.02 (m, 2 H), 1.84–1.81 (m, 4 H), 1.66–1.63 (m, 1 H), 1.39–1.18 (m, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 173.6, 166.8 (d, JCP = 8.1 Hz), 147.7 (d, JCP = 8.1 Hz), 136.7, 132.7, 129.3, 128.7, 108.4 (d, JCP = 3.7 Hz), 58.8, 55.1 (d, JCP = 6.6 Hz), 30.3, 26.2, 25.2 ppm. 31P NMR (161.9 MHz, H3PO4): δ = –4.8 ppm. HRMS: m/z calcd for C18H24NO6P: 381.1341; found: 381.1326. IR (neat): 3033, 2960, 2936, 2859, 1707, 1659, 1631, 1450, 1329, 1280, 1187, 1044 cm–1. Nef–Perkow–Mumm Product 6a – Typical Procedure Under an argon atmosphere, a mixture of p-chlorobenzoyl chloride (128 μL, 1.0 mmol) and cyclohexyl isocyanide (124 μL, 1.0 mmol) was stirred at 60 °C for 2 h. Then trimethyl phosphite (118 μL, 1.0 mmol) was added, and the mixture was stirred at rt for 5 min to afford the ketenimine intermediate. To a 1.0 M solution of the keteneimine (formed in situ) in MeCN was added p-nitrobenzoic acid (167 mg, 1.0 mmol), and the mixture was stirred at 40 °C for 1 h. The solvent was removed under reduced pressure, and the crude product was purified by flash chromatography on silica gel (EtOAc/DCM, 5:95) to afford 6a as yellow oil in 56% yield (292 mg, 0.56 mmol). Rf = 0.71 (DCM/EtOAc, 7:3). 1H NMR (400 MHz, CDCl3): δ = 8.26 (d, JHH = 9.1 Hz, 2 H), 7.67 (d, JHH = 9.1 Hz, 2 H), 7.38–7.33 (m, 4 H), 6.09 (d, JHP = 7.8 Hz, 1 H), 3.80 (d, JHP = 11.4 Hz, 3 H), 3.73–3.66 (m, 1 H), 3.58 (d, JHP = 11.4 Hz, 3 H), 2.15–2.06 (m, 1 H), 2.01–1.92 (m, 1 H), 1.77–1.72 (m, 3 H), 1.55–1.44 (m, 2 H), 1.09–1.04 (m, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 172.9, 171.6 (d, JCP = 5.1 Hz), 150.0, 140.6, 135.7, 133.1 (d, JCP = 5.9 Hz), 129.3, 129.3, 129.1, 124.0, 77.2 (d, JCP = 4.4 Hz), 60.5, 54.9 (d, JCP = 5.9 Hz), 54.5 (d, JCP  = 5.9 Hz), 30.4, 29.2, 26.2, 26.1, 24.8 ppm. 31P NMR (161.9 MHz, H3PO4): δ = 0.3 ppm. IR (neat): 2938, 2859, 1716, 1688, 1530, 1348, 1300, 1044, 909, 855 cm–1.