Synlett 2017; 28(19): 2565-2568
DOI: 10.1055/s-0036-1590863
cluster
© Georg Thieme Verlag Stuttgart · New York

DFT Studies Provide Mechanistic Insight into Nickel-Catalyzed Cross-Coupling Involving Organoaluminum-Mediated C–O Bond Cleavage

Ze-Kun Yanga, b, Chao Wang*a, b, Masanobu Uchiyama*a, b
  • aGraduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo-to 113-0033, Japan   Email: chaowang@mol.f.u-tokyo.ac.jp   Email: uchiyama@mol.f.u-tokyo.ac.jp
  • bAdvanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory RIKEN, 2-1 Hirosawa, Wako-shi, Saitama-ken 351-0198, Japan
This work was supported by JSPS KAKENHI (S) (No. 24229011, No. 17H06173) (to M. U.). This research was also partly supported by grants from Asahi Glass Foundation, Nagase Science Technology Development Foundation, Sumitomo Foundation, and Kobayashi International Scholarship Foundation (to M. U.), and from YakuGaku ShinKoKai Foundation (to C. W.)
Further Information

Publication History

Received: 31 May 2017

Accepted after revision: 10 July 2017

Publication Date:
25 August 2017 (eFirst)

Published as part of the Cluster C–O Activation

Abstract

Density functional theory (DFT) calculations were performed to examine the reaction pathway of Ni-catalyzed cross-coupling with organoaluminum through C–O bond cleavage. The results indicate that the strong Lewis acidity of organoaluminums significantly facilitates the transmetalation step, but not the oxidative addition or reductive elimination step.

Supporting Information

 
  • References and Notes

  • 1 Woodward S. Modern Organoaluminum Reagents: Preparation, Structure, Reactivity and Use. In Top. Organometal. Chem. Vol. 41 Dagorne S. Springer; Berlin, Heidelberg; 2013: 1-322
    • 2a Negishi E. Baba S. J. Chem. Soc., Chem. Commun. 1976; 596b
    • 2b Negishi E. Baba S. J. Am. Chem. Soc. 1976; 98: 6729

      For selected recent reviews, see:
    • 3a Haas D. Hammann JM. Greiner R. Knochel P. ACS Catal. 2016; 6: 1540
    • 3b Xu S. Kamada H. Kim EH. Oda A. Negishi E. In Metal Catalyzed Cross-Coupling Reactions and More. Vol. 1 de Meijere A. Brase B. Oestreich M. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim; 2014: 133-278
    • 3c Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 3d Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417

      For selected recent reviews, see:
    • 4a Zeng H. Qiu Z. Domínguez-Huerta A. Hearne Z. Chen Z. Li C.-J. ACS Catal. 2017; 7: 510
    • 4b Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 4c Su B. Cao Z.-C. Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 4d Tollefson EJ. Hanna LE. Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
    • 4e Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 4f Kakiuchi F. Kochi T. Murai S. Synlett 2014; 25: 2390
    • 4g Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 5a Morioka T. Nishizawa A. Nakamura K. Tobisu M. Chatani N. Chem. Lett. 2015; 44: 1729
    • 5b Liu X. Hsiao C.-C. Kalvet I. Leiendecker M. Guo L. Schoenebeck F. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6093
    • 5c Kelley P. Edouard GA. Lin S. Agapie T. Chem. Eur. J. 2016; 22: 17173
    • 5d Ogawa H. Yang Z.-K. Minami H. Kojima K. Saito T. Wang C. Uchiyama M. ACS Catal. 2017; 7: 3988
    • 6a Lee C. Yang W. Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
    • 6b Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 6c Kohn W. Becke A. Parr RG. J. Phys. Chem. 1996; 100: 12974
  • 7 Zhao Y. Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 8 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Jr. Peralta JE. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam MJ. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas Ö. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09, Revision D.01. Gaussian Inc; Wallingford (CT, USA); 2013
    • 9a Maeda S. Osada Y. Morokuma K. Ohno K. GRRM 11, Version 11.03. 2012
    • 9b Maeda S. Ohno K. Morokuma K. Phys. Chem. Chem. Phys. 2013; 15: 3683
    • 9c Ohno K. Maeda S. Chem. Phys. Lett. 2004; 384: 277
    • 9d Maeda S. Ohno K. J. Phys. Chem. A 2005; 109: 5742
    • 9e Ohno K. Maeda S. J. Phys. Chem. A 2006; 110: 8933
    • 10a Miertus S. Scrocco E. Tomasi J. Chem. Phys. 1981; 55: 117
    • 10b Pascual-Ahuir JL. Silla E. Tuñón I. J. Comput. Chem. 1994; 15: 1127
    • 10c For recent review, see: Tomasi J. Mennucci B. Cammi R. Chem. Rev. 2005; 105: 2999

      For recent mechanistic studies on TM-mediated C–O bond cleavage, see:
    • 11a Wititsuwannakul T. Tantirungrotechai Y. Surawatanawong P. ACS Catal. 2016; 6: 1477
    • 11b Ogawa H. Minami H. Ozaki T. Komagawa S. Wang C. Uchiyama M. Chem. Eur. J. 2015; 21: 13904
    • 11c Lu Q. Yu H. Fu Y. J. Am. Chem. Soc. 2014; 136: 8252
    • 11d Hong X. Liang Y. Houk KN. J. Am. Chem. Soc. 2014; 136: 2017
    • 11e Cornella J. Gómez-Bengoa E. Martin R. J. Am. Chem. Soc. 2013; 135: 1997
    • 11f Kelley P. Lin S. Edouard G. Day MW. Agapie T. J. Am. Chem. Soc. 2012; 134: 5480
    • 11g Quasdorf KW. Antoft-Finch A. Liu P. Silberstein AL. Komaromi A. Blackburn T. Ramgren SD. Houk KN. Snieckus V. Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
    • 11h Li Z. Zhang S.-L. Fu Y. Guo Q.-X. Liu L. J. Am. Chem. Soc. 2009; 131: 8815
    • 11i Yoshikai N. Matsuda H. Nakamura E. J. Am. Chem. Soc. 2009; 131: 9590
  • 12 Glendening ED. Badenhoop JK. Reed AE. Carpenter JE. Bohmann JA. Morales CM. Weinhold F. NBO5.9 Theoretical Chemistry Institute. University of Wisconsin; Madison, WI; 2009. http://www.chem.wisc.edu/~nbo5
  • 13 Cornella J. Martin R. Org. Lett. 2013; 15: 6298