Synlett 2017; 28(18): 2353-2359
DOI: 10.1055/s-0036-1590864
synpacts
© Georg Thieme Verlag Stuttgart · New York

Syntheses of Dimeric Securinega Alkaloids

Sangbin Jeon
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea   eMail: sunkyu.han@kaist.ac.kr
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141   Korea
,
Joonoh Park
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea   eMail: sunkyu.han@kaist.ac.kr
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141   Korea
,
Sunkyu Han*
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea   eMail: sunkyu.han@kaist.ac.kr
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141   Korea
› Institutsangaben
This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1701-13.
Weitere Informationen

Publikationsverlauf

Received: 11. Juni 2017

Accepted after revision: 11. Juli 2017

Publikationsdatum:
22. August 2017 (online)


This work is dedicated to Professor Jin Baek Kim on the occasion of his honorable retirement

Abstract

The isolation of flueggenines A and B by Yue and co-workers in 2006 has triggered a burst of isolation reports of dimeric and oligomeric securinega alkaloid natural products. The compelling molecular structures of these compounds with various modes of connection between monomeric securinega units have posed intriguing challenges to the synthetic organic community. Herein, we have categorized high-order securinega alkaloids based on their biosynthetic mode of dimerization or oligomerization. We then have compiled all reported syntheses of dimeric securinega alkaloids based on our classification.

1 Introduction

2 Categorization of High-Order Securinega Alkaloid Natural Products

3 Syntheses of Type I Dimeric Securinega Alkaloids

4 Syntheses of Type II Dimeric Securinega Alkaloids

5 Synthesis of Type III Dimeric Securinega Alkaloid

6 Conclusion

 
  • References

    • 1a Murav’eva VI. Ban’kovskii AI. Dokl. Akad. Nauk SSSR 1956; 110: 998
    • 1b Saito S. Kotera K. Sugimoto N. Horii Z. Tamura Y. Chem. Ind. 1962; 1652
    • 1c Satoda I. Murayama M. Tsuji J. Yoshii E. Tetrahedron Lett. 1962; 3: 1199
    • 1d Saito S. Kotera K. Shigematsu N. Ide A. Sugimoto N. Horii Z. Hanaoka M. Yamawaki Y. Tamura Y. Tetrahedron 1963; 19: 2085
    • 2a Snieckus V. In The Alkaloids . Vol. 14. Manske RH. F. Academic Press; New York: 1973. Vol. 14, 425-503
    • 2b Beutler JA. Brubaker AN. Drugs Future 1987; 12: 957
    • 2c Weinreb SM. Nat. Prod. Rep. 2009; 26: 758
    • 2d Zhang W. Li J.-Y. Lan P. Sun P.-H. Wang Y. Ye W.-C. Chen W.-M. J. Chin. Pharm. Sci. 2011; 20: 203
    • 2e Chirkin E. Atkatlian W. Porée F.-H. In The Alkaloids . Knölker H.-J. Academic Press; London: 2015. Chap. 1, 1–120
    • 2f Wehlauch R. Gademann K. Asian J. Org. Chem. 2017; DOI: 10.1002/ajoc.201700142.
  • 3 Gan L.-S. Fan C.-Q. Yang S.-P. Wu Y. Lin L.-P. Ding J. Yue J.-M. Org. Lett. 2006; 8: 2285
  • 4 Zhang H. Zhu K.-K. Han Y.-S. Luo C. Wainberg MA. Yue J.-M. Org. Lett. 2015; 17: 6274
  • 5 Chen M. Hou L. Zhiwu Xuebao 1985; 27: 625
  • 6 Zhang H. Han Y.-S. Wainberg MA. Yue J.-M. Tetrahedron Lett. 2016; 57: 1798
  • 7 Wang G.-Y. Wang A.-T. Zhao B.-X. Lei X.-P. Zhang D.-M. Jiang R.-W. Wang Y. Ye W.-C. Tetrahedron Lett. 2016; 57: 3810
  • 8 Zhao B.-X. Wang Y. Zhang D.-M. Jiang R.-W. Wang G.-C. Shi J.-M. Huang X.-J. Chen W.-M. Che C.-T. Ye W.-C. Org. Lett. 2011; 13: 3888
  • 9 Zhao B.-X. Wang Y. Li C. Wang G.-C. Huang X.-J. Fan C.-L. Li Q.-M. Zhu H.-J. Chen W.-M. Ye W.-C. Tetrahedron Lett. 2013; 54: 4708
    • 10a Wang L.-C. Luis AL. Agapiou K. Jang H.-Y. Krische MJ. J. Am. Chem. Soc. 2002; 124: 2402
    • 10b Frank SA. Mergott DJ. Roush WR. J. Am. Chem. Soc. 2002; 124: 2404

      For reviews on RC reaction, see:
    • 11a Aroyan CE. Dermenci A. Miller SJ. Tetrahedron 2009; 65: 4069
    • 11b Xie P. Huang Y. Eur. J. Org. Chem. 2013; 6213
  • 12 Zhang H. Wei W. Yue J.-M. Tetrahedron 2013; 69: 3942
  • 13 Zhang H. Zhang C.-R. Han Y.-S. Wainberg MA. Yue J.-M. RSC Adv. 2015; 5: 107045
  • 14 Li X.-H. Cao M.-M. Zhang Y. Li S.-L. Di Y.-T. Hao X.-J. Tetrahedron Lett. 2014; 55: 6101
  • 15 Zhang H. Zhang C.-R. Zhu K.-K. Gao A.-H. Luo C. Li J. Yue J.-M. Org. Lett. 2013; 15: 120
  • 16 Zhang H. Han Y.-S. Wainberg MA. Yue J.-M. Tetrahedron 2015; 71: 3671
  • 17 Klochkov SG. Afanas'eva SV. Grigor'ev VV. Chem. Nat. Compd. 2008; 44: 197
  • 18 Perez M. Ayad T. Maillos P. Poughon V. Fahy J. Ratovelomanana-Vidal V. Synlett 2016; 27: 1077
  • 19 Perez M. Ayad T. Maillos P. Poughon V. Fahy J. Ratovelomanana-Vidal V. ACS Med. Chem. Lett. 2016; 7: 403
  • 20 Tang G. Liu X. Ma N. Huang X. Wu Z.-L. Zhang W. Wang Y. Zhao B.-X. Wang Z.-Y. Ip FC. F. Ip NY. Ye W.-C. Shi L. Chen W.-M. ACS Chem. Neurosci. 2016; 7: 1442
  • 21 Hu Y.-Q. Li C. Zhao B.-X. Li J.-Y. Huang X.-J. Lin J. Wang Y. Ye W.-C. Chen W.-M. Tetrahedron 2014; 70: 4903
  • 22 Wei H. Qiao C. Liu G. Yang Z. Li C.-C. Angew. Chem. Int. Ed. 2013; 52: 620
  • 23 Ma N. Yao Y. Zhao B.-X. Wang Y. Ye W.-C. Jiang S. Chem. Commun. 2014; 50: 9284
  • 24 Jeon S. Han S. J. Am. Chem. Soc. 2017; 139: 6302