Synthesis 2017; 49(23): 5131-5142
DOI: 10.1055/s-0036-1590871
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Penta-2,4-dienenitriles by the Horner–Wadsworth–Emmons Olefination of Enones

Carlos E. Benckea, Mário A. Marangonib, Adriano F. Camargob, Cassio A. Fantinelb, Helio G. Bonacorsob, Marcos A. P. Martinsb, Nilo Zanatta*b
  • aLaboratory of Chemistry, Instituto Federal Catarinense, 89240-000, São Francisco do Sul, SC, Brazil
  • bNúcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, Brazil   Email: nilo.zanatta@ufsm.br
The authors are grateful for financial support from the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS/CNPq – PRONEX – Grant No. 16/2551-0000477-3) and fellowships from CNPq (C.E.B., C.A.F.), CAPES (M.A.M.), and FAPERGS (A.F.C.).
Further Information

Publication History

Received: 14 June 2017

Accepted after revision: 18 July 2017

Publication Date:
24 August 2017 (eFirst)

Abstract

Three new series of compounds, 5-alkoxy-3-(trifluoromethyl)penta-2,4-dienenitriles, 5-(phenylthio)-3-(trifluoromethyl)penta-2,4-dienenitriles, and ethyl 4-alkoxy-2-(cyanomethylene)but-3-enoates, obtained from the olefination reaction of the respective enones with diethyl cyanomethylphosphonate via the Horner–Wadsworth–Emmons olefination are reported. All products were obtained as single regioisomers; however, the composition of the stereoisomers changed according to the enone substituents. A study based on 1H and 13C NMR chemical shifts, 1H–19F and 13C–19F NMR coupling constants, 1H NMR signal integrals, and HSQC, HMBC, and NOESY experiments was performed in order to assign the structure and percentage of each stereoisomer obtained.

Supporting Information

 
  • References

  • 1 Landge SM. Török B. Lett. Org. Chem. 2014; 11: 374
  • 2 Wei H. Schlosser M. Eur. J. Org. Chem. 1998; 2603
  • 3 Camps F. Coll J. Fabrias G. Guerrero A. Tetrahedron 1984; 40: 2871
  • 4 Arlt D. Jautelat M. Lantzsch R. Angew. Chem., Int. Ed. Engl. 1981; 20: 703
  • 5 Lattanzi A. Orelli LR. Barone P. Massa A. Iannece P. Scettri A. Tetrahedron Lett. 2003; 44: 1333
    • 6a Fleming FF. Shook BC. Jiang T. Steward OW. Org. Lett. 1999; 1: 1547
    • 6b Zoretic PA. Fang H. Ribeiro AA. J. Org. Chem. 1998; 63: 7213
  • 7 Sharanin YA. Goncharenko MP. Litvinov VP. Russ. Chem. Rev. 1998; 67: 442
  • 8 For a review of applications of the HWE reaction in the synthesis of natural products, see: Bisceglia JA. Orelli LR. Curr. Org. Chem. 2012; 16: 2206
  • 9 Chinthakindia PK. Nandia GC. Govendera T. Krugera HG. Naicker T. Arvidsson PI. Synlett 2016; 27: 1423
  • 10 Blasdel LK. Myers AG. Org. Lett. 2005; 7: 4281
  • 11 Comins DL. Ollinger CG. Tetrahedron Lett. 2001; 42: 4115
  • 12 For recent progress concerning the HWE reaction, see: Bisceglia JA. Orelli LR. Curr. Org. Chem. 2015; 19: 744
    • 13a Korchowiec J. J. Mol. Struct.: THEOCHEM 2003; 663: 175
    • 13b Imade M. Hirao H. Omoto K. Fujimoto H. J. Org. Chem. 1999; 64: 6697
    • 13c Wang Y.-W. Fang J.-M. Wang Y.-K. Wang M.-H. Ko T.-Y. Cherng Y.-J. J. Chem. Soc., Perkin Trans. 1 1992; 1209
  • 14 Kaname M. Yamada M. Yoshifuji S. Sashida H. Chem. Pharm. Bull. 2009; 57: 49
  • 15 Mu W.-H. Chasse GA. Fang DC. Organometallics 2009; 28: 5848
  • 16 Houlden CE. Bailey CD. Ford JG. Gagné MR. Lloyd-Jones GC. Booker-Milburn KI. J. Am. Chem. Soc. 2008; 130: 10066
  • 17 Menor-Salván C. Ruiz-Bermejo M. Osuna-Esteban S. Muñoz-Caro G. Veintemillas-Verdaguer S. Chem. Biodiversity 2008; 5: 2729
  • 18 Fringuelli F. Pani G. Piermatti O. Pizzo F. Tetrahedron 1994; 50: 11499
  • 19 Verdegem PJ. E. Monnee MC. F. Lugtenburg J. J. Org. Chem. 2001; 66: 1269
  • 20 Maruyama S. Tao XT. Hokari H. Noh T. Zhang Y. Wada T. Sasabe H. Suzuki H. Watanabe T. Miyata S. Chem. Lett. 1998; 749
  • 21 Gudgeon H. Hill R. Isaacs E. J. Chem. Soc. 1951; 1926
  • 22 Kojima S. Fukuzaki T. Yamakawa A. Murai Y. Org. Lett. 2004; 6: 3917
    • 23a Peppe C. de Azevedo Mello P. das Chagas RP. J. Organomet. Chem. 2006; 691: 2335
    • 23b Nakao Y. Yada A. Ebata S. Hiyama T. J. Am. Chem. Soc. 2007; 129: 2428
    • 23c Qin C. Jiao N. J. Am. Chem. Soc. 2010; 132: 15893
    • 23d Rokade BV. Malekar SK. Prabhu KR. Chem. Commun. 2012; 48: 5506
  • 24 Kibou Z. Cheikh N. Villemin D. Choukchou-Braham N. Mostefa-Kara B. Benabdallah M. Int. J. Org. Chem. 2011; 1: 242
  • 25 Shen Y. Ni J. Li P. Sun J. J. Chem. Soc., Perkin Trans. 1 1999; 509
  • 26 Gebhardt J. Goetz N. Jaedicke H. Mayer G. Rack M. PCT Int. Appl WO 2005063780 A1, 2005 ; Chem. Abstr. 2005, 130, 38393w.
    • 27a Colla A. Martins MA. P. Clar G. Krimmer S. Fischer P. Synthesis 1991; 483
    • 27b Siqueira GM. Flores AF. C. Clar G. Zanatta N. Martins MA. P. Quim. Nova 1994; 17: 24 ; Chem. Abstr. 1995, 122, 187063a
  • 28 Zanatta N. Fortes AS. Bencke CE. Marangoni MA. Camargo FA. Fantinel CA. Bonacorso HG. Martins MA. P. Synthesis 2015; 47: 827
  • 29 Martins MA. P. Bastos GP. Sinhorin AP. Zimmermann NE. K. Bonacorso HG. Zanatta N. Synthesis 2002; 2220
  • 30 Hojo M. Masuda R. Kamitori Y. Tetrahedron Lett. 1976; 1009
  • 31 Zhao J. Song T. Jiang H. Xu L. Zhu S. Chin. J. Chem. 2010; 28: 1623
  • 32 Thomas R. Boutagy J. Chem. Rev. 1974; 74: 87
  • 33 Flores AF. C. Martins MA. P. Siqueira GM. Zanatta N. Bonacorso HG. Spectrosc. Lett. 1999; 32: 973