Synthesis 2017; 49(22): 4917-4930
DOI: 10.1055/s-0036-1590881
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in the Deoxyfluorination of Alcohols and Phenols: New Reagents, Mechanistic Insights, and Applications

Wen-Li Hua, Xiang-Guo Hu*a, Luke Hunter*b
  • aNational Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. of China   Email: huxiangg@iccas.ac.cn
  • bSchool of Chemistry, UNSW, Sydney, NSW 2052, Australia   Email: l.hunter@unsw.edu.au
XGH thanks the Natural Science Foundation of China (21502076), Natural Science Foundation of Jiangxi Province (20161BAB213068) and Outstanding Young Talents Scheme of Jiangxi Province (2017) for support.
Further Information

Publication History

Received: 13 June 2017

Accepted after revision: 18 July 2017

Publication Date:
28 August 2017 (eFirst)

Abstract

This short review describes the development of new reagents and methods for the deoxyfluorination of phenols and alcohols during the period of 2011 to 2017. Important advances in the mechanistic understanding of these processes are discussed. The continuing importance of deoxyfluorination chemistry for the synthesis of valuable target molecules is highlighted through case studies including examples of 18F-radiosynthesis and the preparation of exotic multifluorinated compounds.

1 Introduction

2 New Deoxyfluorination Reagents

3 Novel Applications of ‘Legacy’ Deoxyfluorinating Reagents

4 Conclusions and Future Directions

 
  • References

  • 1 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 2 Middleton WJ. J. Org. Chem. 1975; 40: 574
  • 3 Singh RP. Shreeve JM. Synthesis 2002; 2561
  • 4 Smith WC. Angew. Chem., Int. Ed. Engl. 1962; 1: 467
  • 5 Al-Maharik N. O’Hagan D. Aldrichimica Acta 2011; 44: 65
  • 6 Ni C. Hu M. Hu J. Chem. Rev. 2015; 115: 765
  • 7 Campbell MG. Ritter T. Chem. Rev. 2015; 115: 612
  • 8 Champagne PA. Desroches J. Hamel JD. Vandamme M. Paquin JF. Chem. Rev. 2015; 115: 9073
  • 9 Richardson P. Expert Opin. Drug Discovery 2016; 11: 983
  • 10 Tang PP. Wang WK. Ritter T. J. Am. Chem. Soc. 2011; 133: 11482
  • 11 Fujimoto T. Becker F. Ritter T. Org. Process Res. Dev. 2014; 18: 1041
  • 12 Eumann CN. N. Hooker JM. Ritter T. Nature (London) 2016; 534: 369
  • 13 Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216
  • 14 Campbell MG. Ritter T. Org. Process Res. Dev. 2014; 18: 474
  • 15 Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 16 Sladojevich F. Arlow SI. Tang PP. Ritter T. J. Am. Chem. Soc. 2013; 135: 2470
  • 17 Fujimoto T. Ritter T. Org. Lett. 2015; 17: 544
  • 18 Goldberg NW. Shen X. Li J. Ritter T. Org. Lett. 2016; 18: 6102
  • 19 Bennua-skalmowski B. Vorbruggen H. Tetrahedron Lett. 1995; 36: 2611
  • 20 Nielsen MK. Ugaz CR. Li WP. Doyle AG. J. Am. Chem. Soc. 2015; 137: 9571
  • 21 Kelly BD. Lambert TH. J. Am. Chem. Soc. 2009; 131: 13930
  • 22 Li L. Ni C. Wang F. Hu J. Nat. Commun. 2016; 7: 13320
  • 23 Dolbier WR. Battiste MA. Chem. Rev. 2003; 103: 1071
  • 24 Ni C. Hu J. Synthesis 2014; 46: 842
  • 25 Zanda M. Synthesis 2017; 49: A30
  • 26 It should be pointed out that naked fluoride is not actually produced as drawn in Scheme 13, but more likely HF2 –.
  • 27 Schimler SD. Cismesia MA. Hanley PS. Froese RD. J. Jansma MJ. Bland DC. Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
  • 28 Bellavance G. Dubé P. Nguyen B. Synlett 2012; 23: 569
  • 29 Beaulieu F. Beauregard L.-P. Courchesne G. Couturier M. LaFlamme F. L’Heureux A. Org. Lett. 2009; 11: 5050
  • 30 L’Heureux A. Beaulieu F. Bennett C. Bill DR. Clayton S. LaFlamme F. Mirmehrabi M. Tadayon S. Tovell D. Couturier M. J. Org. Chem. 2010; 75: 3401
  • 31 Mahe O. L’Heureux A. Couturier M. Bennett C. Clayton S. Tovell D. Beaulieu F. Paquin J.-F. J. Fluorine Chem. 2013; 153: 57
  • 32 McTeague TA. Jamison TF. Angew. Chem. Int. Ed. 2016; 55: 15072
  • 33 Umemoto T. Garrick LM. Saito N. Beilstein J. Org. Chem. 2012; 8: 461
  • 34 Umemoto T. Singh RP. J. Fluorine Chem. 2012; 140: 17
  • 35 Bruns S. Haufe G. J. Fluorine Chem. 2000; 104: 247
  • 36 Kalow JA. Doyle AG. J. Am. Chem. Soc. 2010; 132: 3268
  • 37 Shaw G. Kalow JA. Doyle AG. Org. Synth. 2012; 89: 9
  • 38 Kalow JA. Doyle AG. J. Am. Chem. Soc. 2011; 133: 16001
  • 39 Graham TJ. A. Lambert RF. Ploessl K. Kung HF. Doyle AG. J. Am. Chem. Soc. 2014; 136: 5291
  • 40 Lee E. Kamlet AS. Powers DC. Neumann CN. Boursalian GB. Furuya T. Choi DC. Hooker JM. Ritter T. Science (Washington, D. C.) 2011; 334: 639
  • 41 Durie AJ. Slawin AM. Z. Lebl T. O’Hagan D. Angew. Chem. Int. Ed. 2012; 51: 10086
  • 42 Faraday M. Ann. Chem. Phys. 1825; 274
  • 43 Mitscherlich E. Ann. Phys. 1835; 111: 370
  • 44 Keddie NS. Slawin AM. Z. Lebl T. Philp D. O’Hagan D. Nat. Chem. 2015; 7: 483
  • 45 Ziegler BE. Lecours M. Marta RA. Featherstone J. Fillion E. Hopkins WS. Steinmetz V. Keddie NS. O’Hagan D. McMahon TB. J. Am. Chem. Soc. 2016; 138: 7460
  • 46 Hunter L. Jolliffe KA. Jordan MJ. T. Jensen P. Macquart RB. Chem. Eur. J. 2011; 17: 2340
  • 47 Patel AR. Hu XG. Lawer A. Ahmed MI. Au C. Jwad R. Trinh J. Gonzalez C. Hannah E. Bhadbhade MM. Hunter L. Tetrahedron 2016; 72: 3305
  • 48 Cheerlavancha R. Lawer A. Cagnes M. Bhadbhade M. Hunter L. Org. Lett. 2013; 15: 5562
  • 49 Hunter L. Beilstein J. Org. Chem. 2010; 6: 38
  • 50 Yamamoto I. Jordan MJ. T. Gavande N. Doddareddy MR. Chebib M. Hunter L. Chem. Commun. 2012; 48: 829
  • 51 Hu XG. Thomas DS. Griffith R. Hunter L. Angew. Chem. Int. Ed. 2014; 53: 6176
  • 52 Hunter L. Butler S. Ludbrook SB. Org. Biomol. Chem. 2012; 10: 8911
  • 53 Nemoto H. Nishiyama T. Akai S. Org. Lett. 2011; 13: 2714
  • 54 Chang CJ. ACS Cent. Sci. 2016; 2: 266