Synthesis 2017; 49(23): 5120-5130
DOI: 10.1055/s-0036-1590893
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed C–N Bond Exchange of N-Heterocyclic Substituents around Pyridine and Pyrimidine Cores

Sheng Tao
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: ningliu@shzu.edu.cn   Email: xuliang4423@163.com   Email: dbinly@126.com
,
Enhui Ji
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: ningliu@shzu.edu.cn   Email: xuliang4423@163.com   Email: dbinly@126.com
,
Lei Shi
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: ningliu@shzu.edu.cn   Email: xuliang4423@163.com   Email: dbinly@126.com
,
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: ningliu@shzu.edu.cn   Email: xuliang4423@163.com   Email: dbinly@126.com
,
Liang Xu*
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: ningliu@shzu.edu.cn   Email: xuliang4423@163.com   Email: dbinly@126.com
,
Bin Dai*
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: ningliu@shzu.edu.cn   Email: xuliang4423@163.com   Email: dbinly@126.com
› Author Affiliations
The authors thank the National Natural Science Foundation of China for financial support (grant number 21466033), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R46), and Yangtze River scholar research project of Shihezi University (Grant No. CJXZ201601).
Further Information

Publication History

Received: 02 May 2017

Accepted after revision: 03 August 2017

Publication Date:
28 August 2017 (eFirst)

S. Tao and E. Ji contributed equally.

Abstract

A copper-catalyzed transfer N-heteroarylation strategy using a C–N bond exchange reaction is described. This reaction accommodates a wide range of pyridine and pyrimidine rings bearing halogen atoms, which have wide utility for subsequent transformations. This method provides a direct and operationally simple approach for modifying complex molecules by the exchange of N-heterocyclic substituents.

Supporting Information

 
  • References

    • 1a Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 1b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 1c Carril M. SanMartin R. Domínguez E. Chem. Soc. Rev. 2008; 37: 639
    • 1d Turner NJ. Chem. Rev. 2011; 111: 4073
    • 1e Surry DS. Buchwald SL. Chem. Sci. 2010; 1: 13
    • 1f Zi W. Zuo Z. Ma D. Acc. Chem. Res. 2015; 48: 702
    • 1g Sun CL. Shi ZJ. Chem. Rev. 2014; 114: 9219
    • 1h Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1i Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 1j Yang Q. Wang Q. Yu Z. Chem. Soc. Rev. 2015; 44: 2305
    • 2a Blanksby SJ. Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 2b Kruger K. Tillack A. Beller M. ChemSusChem 2009; 2: 715
    • 2c Wang T. Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 2d Zhang C. Tang C.-H. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 2e Tian SK. Gu Y. Synlett 2013; 24: 1170
    • 3a Ouyang K. Hao W. Zhang WX. Xi ZF. Chem. Rev. 2015; 115: 12045
    • 3b Wang QJ. Su YJ. Li LX. Huang HM. Chem. Soc. Rev. 2016; 45: 1257
    • 3c Wang CY. Xi ZF. Chem. Soc. Rev. 2007; 36: 1395
    • 3d Chen JL. Song QL. Wang CY. Xi ZF. J. Am. Chem. Soc. 2002; 124: 6238
    • 3e Sun XH. Wang CY. Li ZP. Zhang SW. Xi ZF. J. Am. Chem. Soc. 2004; 126: 7172
    • 4a Wu X.-S. Chen Y. Li M.-B. Zhou M.-G. Tian SK. J. Am. Chem. Soc. 2012; 134: 14694
    • 4b Li MB. Wang Y. Tian SK. Angew. Chem. Int. Ed. 2012; 51: 2968
    • 4c Huang H. Ji X. Wu W. Huang L. Jiang H. J. Org. Chem. 2013; 78: 3774
    • 5a Mukherjee S. List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 5b Geng W. Zhang WX. Hao W. Xi ZF. J. Am. Chem. Soc. 2012; 134: 20230
    • 5c Hao W. Wei J. Geng W. Zhang WX. Xi ZF. Angew. Chem. Int. Ed. 2014; 53: 14533
    • 5d Qi ZS. Yu SJ. Li XW. Org. Lett. 2016; 18: 700
    • 5e Wu JC. Song RJ. Wang ZQ. Huang XC. Xie YX. Li JH. Angew. Chem. Int. Ed. 2012; 51: 3453
    • 5f Wu H. He Y.-P. Gong LZ. Adv. Synth. Catal. 2012; 354: 975
    • 5g Yang CF. Wang JY. Tian SK. Chem. Commun. 2011; 47: 8343
    • 5h Wu W. Su W. J. Am. Chem. Soc. 2011; 133: 11924
    • 5i Luo S. Hu Z. Zhu Q. Org. Chem. Front. 2016; 3: 364
    • 6a Koreeda T. Kochi T. Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 7238
    • 6b Murahashi S.-I. Komiya N. Terai H. Nakae T. J. Am. Chem. Soc. 2003; 125: 15312
    • 6c Zeng X. Kinjo R. Donnadieu B. Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 942
    • 6d Dubovyk I. Pichugin D. Yudin AK. Angew. Chem. Int. Ed. 2011; 50: 5924
    • 6e Tian JS. Loh TP. Angew. Chem. Int. Ed. 2010; 49: 8417
    • 6f Yao B. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2012; 51: 12311
    • 6g Chen X. Chen T. Li Q. Zhou Y. Han LB. Yin SF. Chem. Eur. J. 2014; 20: 12234
    • 6h Zhang L. Peng C. Zhao D. Wang Y. Fu HJ. Shen Q. Li JX. Chem. Commun. 2012; 48: 5928
    • 6i Bao YS. Zhaorigetu B. Agula B. Baiyin M. Jia M. J. Org. Chem. 2014; 79: 803
    • 6j Xia XF. Wang N. Zhang LL. Song XR. Liu XY. Liang YM. J. Org. Chem. 2012; 77: 9163
    • 6k Wan JP. Zhou Y. Cao S. J. Org. Chem. 2014; 79: 9872
    • 6l Guo S. Qian B. Xie Y. Xia C. Huang HM. Org. Lett. 2011; 13: 522
    • 6m Li S. Wu J. Org. Lett. 2011; 13: 712
    • 6n Zhao Y. Snieckus V. Org. Lett. 2014; 16: 3200
    • 6o Chen M. Peng J. Mao T. Huang J. Org. Lett. 2014; 16: 6286
    • 6p Liu Y. Yao B. Deng C.-L. Tang R.-Y. Zhang X.-G. Li J.-H. Org. Lett. 2011; 13: 2184
    • 6q Li H. He Z. Guo X. Li W. Zhao X. Li ZP. Org. Lett. 2009; 11: 4176
    • 6r Li T. Wang Z. Zhang M. Zhang HJ. Wen TB. Chem. Commun. 2015; 51: 6777
    • 6s Lai J. Chang L. Yuan G. Org. Lett. 2016; 18: 3194
    • 7a Xie Y. Hu J. Wang Y. Xia C. Huang HM. J. Am. Chem. Soc. 2012; 134: 20613
    • 7b Hu J. Xie Y. Huang HM. Angew. Chem. Int. Ed. 2014; 53: 7272
    • 7c Zhang G. Gao B. Huang HM. Angew. Chem. Int. Ed. 2015; 54: 7657
    • 7d Xi LY. Zhang RY. Liang S. Chen SY. Yu XQ. Org. Lett. 2014; 16: 5269
    • 8a Hie L. Nathel NF. F. Shah TK. Baker EL. Hong X. Yang T.-F. Liu P. Houk KN. Garg NK. Nature 2015; 524: 79
    • 8b Weires NA. Baker EL. Garg NK. Nat. Chem. 2016; 8: 75
    • 8c Li BJ. Wang HY. Zhu QL. Shi ZJ. Angew. Chem. Int. Ed. 2012; 51: 3948
    • 8d Ito M. Sakaguchi A. Kobayashi C. Ikariya T. J. Am. Chem. Soc. 2007; 129: 290
    • 8e Kajita Y. Matsubara S. Kurahashi T. J. Am. Chem. Soc. 2008; 130: 6058
    • 8f Kim J. Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 8g Lei Y. Wrobleski AD. Golden JE. Powell DR. Aube J. J. Am. Chem. Soc. 2005; 127: 4552
    • 8h Wang M. Zhang X. Zhuang Y.-X. Xu Y.-H. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
    • 8i Shimada T. Nakamura I. Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546
    • 8j Tobisu M. Nakamura K. Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
    • 8k Yao M.-L. Adiwidjaja G. Kaufmann DE. Angew. Chem. Int. Ed. 2002; 41: 3375
    • 8l Hu Z. Wang J. Liang D. Zhu Q. Adv. Synth. Catal. 2013; 355: 3290
    • 8m Zhao F. Zhang D. Nian Y. Zhang L. Yang W. Liu H. Org. Lett. 2014; 16: 5124
    • 8n Meng GR. Szostak M. Org. Lett. 2016; 18: 796
    • 9a Muñiz K. Nieger M. Angew. Chem. Int. Ed. 2006; 45: 2305
    • 9b Liu JB. Yan H. Chen HX. Luo Y. Weng J. Lu G. Chem. Commun. 2013; 49: 5268
    • 9c Peng Z. Hu G. Qiao H. Xu P. Gao Y. Zhao Y. J. Org. Chem. 2014; 79: 2733
    • 9d Li DY. Mao XF. Chen HJ. Chen GR. Liu PN. Org. Lett. 2014; 16: 3476
    • 9e Hu JF. Zhao Y. Liu JJ. Zhang YM. Shi ZZ. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 10a Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
    • 10b Fukumoto K. Oya T. Itazaki M. Nakazawa H. J. Am. Chem. Soc. 2009; 131: 38
    • 10c Gong T.-J. Xiao B. Cheng W.-M. Su W. Xu J. Liu Z.-J. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 10630
    • 10d Liskey CW. Liao X. Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
    • 11a Blakey SB. MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 6046
    • 11b Zhang Z. Liu Y. Ling L. Li Y. Dong Y. Gong M. Zhao X. Zhang Y. Wang JB. J. Am. Chem. Soc. 2011; 133: 4330
    • 11c Wu G. Deng Y. Wu C. Zhang Y. Wang JB. Angew. Chem. Int. Ed. 2014; 53: 10510
    • 11d Xie LG. Wang ZX. Angew. Chem. Int. Ed. 2011; 50: 4901
    • 11e Bao H. Qi X. Tambar UK. J. Am. Chem. Soc. 2011; 133: 1206
    • 11f Maity P. Shacklady-McAtee DM. Yap GP. Sirianni ER. Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 11g Nelson HM. Williams BD. Miro J. Toste FD. J. Am. Chem. Soc. 2015; 137: 3213
    • 11h Yu S. Liu S. Lan Y. Wan B. Li X. J. Am. Chem. Soc. 2015; 137: 1623
    • 12a Davies HM. L. Alford JS. Chem. Soc. Rev. 2014; 43: 5151
    • 12b Parr BT. Green SA. Davies HM. J. Am. Chem. Soc. 2013; 135: 4716
    • 12c Yang JM. Zhu CZ. Tang XY. Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
    • 12d Chen K. Zhu ZZ. Zhang YS. Tang XY. Shi M. Angew. Chem. Int. Ed. 2014; 53: 6645
    • 12e Selander N. Worrell BT. Fokin VV. Angew. Chem. Int. Ed. 2012; 51: 13054
    • 12f Zibinsky M. Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
    • 12g Chattopadhyay B. Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
    • 12h Miura T. Tanaka T. Biyajima T. Yada A. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 3883
    • 12i Miura T. Tanaka T. Hiraga K. Stewart SG. Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
    • 12j Huang C.-Y. Doyle AG. J. Am. Chem. Soc. 2015; 137: 5638
    • 12k Schultz EE. Lindsay VN. G. Sarpong R. Angew. Chem. Int. Ed. 2014; 53: 9904
    • 12l Shang H. Wang Y. Tian Y. Feng J. Tang Y. Angew. Chem. Int. Ed. 2014; 53: 5662
  • 13 Murahashi S.-I. Hirano T. Yano T. J. Am. Chem. Soc. 1978; 100: 348
  • 14 Trost BM. Keinan E. J. Org. Chem. 1980; 45: 2741
  • 15 Pawlas J. Nakao Y. Kawatsura M. Hartwig JF. J. Am. Chem. Soc. 2002; 124: 3669
    • 16a Hollmann D. Bahn S. Tillack A. Beller M. Angew. Chem. Int. Ed. 2007; 46: 8291
    • 16b Hollmann D. Bahn S. Tillack A. Beller M. Chem. Commun. 2008; 3199
    • 16c Hollmann D. Jiao H. Spannenberg A. Bahn S. Tillack A. Parton R. Altink R. Beller M. Organometallics 2009; 28: 473
    • 16d Bähn S. Hollmann D. Tillack A. Beller M. Adv. Synth. Catal. 2008; 350: 2099
    • 17a Stephenson NA. Zhu J. Gellman SH. Stahl SS. J. Am. Chem. Soc. 2009; 131: 10003
    • 17b Eldred SE. Stone DA. Gellman SH. Stahl SS. J. Am. Chem. Soc. 2003; 125: 3422