Synthesis 2017; 49(23): 5120-5130
DOI: 10.1055/s-0036-1590893
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed C–N Bond Exchange of N-Heterocyclic Substituents around Pyridine and Pyrimidine Cores

Sheng Tao, Enhui Ji, Lei Shi, Ning Liu*, Liang Xu*, Bin Dai*
The authors thank the National Natural Science Foundation of China for financial support (grant number 21466033), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R46), and Yangtze River scholar research project of Shihezi University (Grant No. CJXZ201601).
Further Information

Publication History

Received: 02 May 2017

Accepted after revision: 03 August 2017

Publication Date:
28 August 2017 (eFirst)

S. Tao and E. Ji contributed equally.

Abstract

A copper-catalyzed transfer N-heteroarylation strategy using a C–N bond exchange reaction is described. This reaction accommodates a wide range of pyridine and pyrimidine rings bearing halogen atoms, which have wide utility for subsequent transformations. This method provides a direct and operationally simple approach for modifying complex molecules by the exchange of N-heterocyclic substituents.

Supporting Information

 
  • References

    • 1a Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 1b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 1c Carril M. SanMartin R. Domínguez E. Chem. Soc. Rev. 2008; 37: 639
    • 1d Turner NJ. Chem. Rev. 2011; 111: 4073
    • 1e Surry DS. Buchwald SL. Chem. Sci. 2010; 1: 13
    • 1f Zi W. Zuo Z. Ma D. Acc. Chem. Res. 2015; 48: 702
    • 1g Sun CL. Shi ZJ. Chem. Rev. 2014; 114: 9219
    • 1h Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1i Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 1j Yang Q. Wang Q. Yu Z. Chem. Soc. Rev. 2015; 44: 2305
    • 2a Blanksby SJ. Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 2b Kruger K. Tillack A. Beller M. ChemSusChem 2009; 2: 715
    • 2c Wang T. Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 2d Zhang C. Tang C.-H. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 2e Tian SK. Gu Y. Synlett 2013; 24: 1170
    • 3a Ouyang K. Hao W. Zhang WX. Xi ZF. Chem. Rev. 2015; 115: 12045
    • 3b Wang QJ. Su YJ. Li LX. Huang HM. Chem. Soc. Rev. 2016; 45: 1257
    • 3c Wang CY. Xi ZF. Chem. Soc. Rev. 2007; 36: 1395
    • 3d Chen JL. Song QL. Wang CY. Xi ZF. J. Am. Chem. Soc. 2002; 124: 6238
    • 3e Sun XH. Wang CY. Li ZP. Zhang SW. Xi ZF. J. Am. Chem. Soc. 2004; 126: 7172
    • 4a Wu X.-S. Chen Y. Li M.-B. Zhou M.-G. Tian SK. J. Am. Chem. Soc. 2012; 134: 14694
    • 4b Li MB. Wang Y. Tian SK. Angew. Chem. Int. Ed. 2012; 51: 2968
    • 4c Huang H. Ji X. Wu W. Huang L. Jiang H. J. Org. Chem. 2013; 78: 3774
    • 5a Mukherjee S. List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 5b Geng W. Zhang WX. Hao W. Xi ZF. J. Am. Chem. Soc. 2012; 134: 20230
    • 5c Hao W. Wei J. Geng W. Zhang WX. Xi ZF. Angew. Chem. Int. Ed. 2014; 53: 14533
    • 5d Qi ZS. Yu SJ. Li XW. Org. Lett. 2016; 18: 700
    • 5e Wu JC. Song RJ. Wang ZQ. Huang XC. Xie YX. Li JH. Angew. Chem. Int. Ed. 2012; 51: 3453
    • 5f Wu H. He Y.-P. Gong LZ. Adv. Synth. Catal. 2012; 354: 975
    • 5g Yang CF. Wang JY. Tian SK. Chem. Commun. 2011; 47: 8343
    • 5h Wu W. Su W. J. Am. Chem. Soc. 2011; 133: 11924
    • 5i Luo S. Hu Z. Zhu Q. Org. Chem. Front. 2016; 3: 364
    • 6a Koreeda T. Kochi T. Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 7238
    • 6b Murahashi S.-I. Komiya N. Terai H. Nakae T. J. Am. Chem. Soc. 2003; 125: 15312
    • 6c Zeng X. Kinjo R. Donnadieu B. Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 942
    • 6d Dubovyk I. Pichugin D. Yudin AK. Angew. Chem. Int. Ed. 2011; 50: 5924
    • 6e Tian JS. Loh TP. Angew. Chem. Int. Ed. 2010; 49: 8417
    • 6f Yao B. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2012; 51: 12311
    • 6g Chen X. Chen T. Li Q. Zhou Y. Han LB. Yin SF. Chem. Eur. J. 2014; 20: 12234
    • 6h Zhang L. Peng C. Zhao D. Wang Y. Fu HJ. Shen Q. Li JX. Chem. Commun. 2012; 48: 5928
    • 6i Bao YS. Zhaorigetu B. Agula B. Baiyin M. Jia M. J. Org. Chem. 2014; 79: 803
    • 6j Xia XF. Wang N. Zhang LL. Song XR. Liu XY. Liang YM. J. Org. Chem. 2012; 77: 9163
    • 6k Wan JP. Zhou Y. Cao S. J. Org. Chem. 2014; 79: 9872
    • 6l Guo S. Qian B. Xie Y. Xia C. Huang HM. Org. Lett. 2011; 13: 522
    • 6m Li S. Wu J. Org. Lett. 2011; 13: 712
    • 6n Zhao Y. Snieckus V. Org. Lett. 2014; 16: 3200
    • 6o Chen M. Peng J. Mao T. Huang J. Org. Lett. 2014; 16: 6286
    • 6p Liu Y. Yao B. Deng C.-L. Tang R.-Y. Zhang X.-G. Li J.-H. Org. Lett. 2011; 13: 2184
    • 6q Li H. He Z. Guo X. Li W. Zhao X. Li ZP. Org. Lett. 2009; 11: 4176
    • 6r Li T. Wang Z. Zhang M. Zhang HJ. Wen TB. Chem. Commun. 2015; 51: 6777
    • 6s Lai J. Chang L. Yuan G. Org. Lett. 2016; 18: 3194
    • 7a Xie Y. Hu J. Wang Y. Xia C. Huang HM. J. Am. Chem. Soc. 2012; 134: 20613
    • 7b Hu J. Xie Y. Huang HM. Angew. Chem. Int. Ed. 2014; 53: 7272
    • 7c Zhang G. Gao B. Huang HM. Angew. Chem. Int. Ed. 2015; 54: 7657
    • 7d Xi LY. Zhang RY. Liang S. Chen SY. Yu XQ. Org. Lett. 2014; 16: 5269
    • 8a Hie L. Nathel NF. F. Shah TK. Baker EL. Hong X. Yang T.-F. Liu P. Houk KN. Garg NK. Nature 2015; 524: 79
    • 8b Weires NA. Baker EL. Garg NK. Nat. Chem. 2016; 8: 75
    • 8c Li BJ. Wang HY. Zhu QL. Shi ZJ. Angew. Chem. Int. Ed. 2012; 51: 3948
    • 8d Ito M. Sakaguchi A. Kobayashi C. Ikariya T. J. Am. Chem. Soc. 2007; 129: 290
    • 8e Kajita Y. Matsubara S. Kurahashi T. J. Am. Chem. Soc. 2008; 130: 6058
    • 8f Kim J. Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 8g Lei Y. Wrobleski AD. Golden JE. Powell DR. Aube J. J. Am. Chem. Soc. 2005; 127: 4552
    • 8h Wang M. Zhang X. Zhuang Y.-X. Xu Y.-H. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
    • 8i Shimada T. Nakamura I. Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546
    • 8j Tobisu M. Nakamura K. Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
    • 8k Yao M.-L. Adiwidjaja G. Kaufmann DE. Angew. Chem. Int. Ed. 2002; 41: 3375
    • 8l Hu Z. Wang J. Liang D. Zhu Q. Adv. Synth. Catal. 2013; 355: 3290
    • 8m Zhao F. Zhang D. Nian Y. Zhang L. Yang W. Liu H. Org. Lett. 2014; 16: 5124
    • 8n Meng GR. Szostak M. Org. Lett. 2016; 18: 796
    • 9a Muñiz K. Nieger M. Angew. Chem. Int. Ed. 2006; 45: 2305
    • 9b Liu JB. Yan H. Chen HX. Luo Y. Weng J. Lu G. Chem. Commun. 2013; 49: 5268
    • 9c Peng Z. Hu G. Qiao H. Xu P. Gao Y. Zhao Y. J. Org. Chem. 2014; 79: 2733
    • 9d Li DY. Mao XF. Chen HJ. Chen GR. Liu PN. Org. Lett. 2014; 16: 3476
    • 9e Hu JF. Zhao Y. Liu JJ. Zhang YM. Shi ZZ. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 10a Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
    • 10b Fukumoto K. Oya T. Itazaki M. Nakazawa H. J. Am. Chem. Soc. 2009; 131: 38
    • 10c Gong T.-J. Xiao B. Cheng W.-M. Su W. Xu J. Liu Z.-J. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 10630
    • 10d Liskey CW. Liao X. Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
    • 11a Blakey SB. MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 6046
    • 11b Zhang Z. Liu Y. Ling L. Li Y. Dong Y. Gong M. Zhao X. Zhang Y. Wang JB. J. Am. Chem. Soc. 2011; 133: 4330
    • 11c Wu G. Deng Y. Wu C. Zhang Y. Wang JB. Angew. Chem. Int. Ed. 2014; 53: 10510
    • 11d Xie LG. Wang ZX. Angew. Chem. Int. Ed. 2011; 50: 4901
    • 11e Bao H. Qi X. Tambar UK. J. Am. Chem. Soc. 2011; 133: 1206
    • 11f Maity P. Shacklady-McAtee DM. Yap GP. Sirianni ER. Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 11g Nelson HM. Williams BD. Miro J. Toste FD. J. Am. Chem. Soc. 2015; 137: 3213
    • 11h Yu S. Liu S. Lan Y. Wan B. Li X. J. Am. Chem. Soc. 2015; 137: 1623
    • 12a Davies HM. L. Alford JS. Chem. Soc. Rev. 2014; 43: 5151
    • 12b Parr BT. Green SA. Davies HM. J. Am. Chem. Soc. 2013; 135: 4716
    • 12c Yang JM. Zhu CZ. Tang XY. Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
    • 12d Chen K. Zhu ZZ. Zhang YS. Tang XY. Shi M. Angew. Chem. Int. Ed. 2014; 53: 6645
    • 12e Selander N. Worrell BT. Fokin VV. Angew. Chem. Int. Ed. 2012; 51: 13054
    • 12f Zibinsky M. Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
    • 12g Chattopadhyay B. Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
    • 12h Miura T. Tanaka T. Biyajima T. Yada A. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 3883
    • 12i Miura T. Tanaka T. Hiraga K. Stewart SG. Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
    • 12j Huang C.-Y. Doyle AG. J. Am. Chem. Soc. 2015; 137: 5638
    • 12k Schultz EE. Lindsay VN. G. Sarpong R. Angew. Chem. Int. Ed. 2014; 53: 9904
    • 12l Shang H. Wang Y. Tian Y. Feng J. Tang Y. Angew. Chem. Int. Ed. 2014; 53: 5662
  • 13 Murahashi S.-I. Hirano T. Yano T. J. Am. Chem. Soc. 1978; 100: 348
  • 14 Trost BM. Keinan E. J. Org. Chem. 1980; 45: 2741
  • 15 Pawlas J. Nakao Y. Kawatsura M. Hartwig JF. J. Am. Chem. Soc. 2002; 124: 3669
    • 16a Hollmann D. Bahn S. Tillack A. Beller M. Angew. Chem. Int. Ed. 2007; 46: 8291
    • 16b Hollmann D. Bahn S. Tillack A. Beller M. Chem. Commun. 2008; 3199
    • 16c Hollmann D. Jiao H. Spannenberg A. Bahn S. Tillack A. Parton R. Altink R. Beller M. Organometallics 2009; 28: 473
    • 16d Bähn S. Hollmann D. Tillack A. Beller M. Adv. Synth. Catal. 2008; 350: 2099
    • 17a Stephenson NA. Zhu J. Gellman SH. Stahl SS. J. Am. Chem. Soc. 2009; 131: 10003
    • 17b Eldred SE. Stone DA. Gellman SH. Stahl SS. J. Am. Chem. Soc. 2003; 125: 3422