Synlett 2018; 29(01): 136-140
DOI: 10.1055/s-0036-1590905
letter
© Georg Thieme Verlag Stuttgart · New York

TBHP/n-Bu4PBr-Promoted Oxidative Cross-Dehydrogenative Coupling of Aryl Methanols: A Facile Synthesis of Symmetrical Carboxylic Anhydride Derivatives

Mehdi Adib*
School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Rahim Pashazadeh
School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
› Author Affiliations
This research was supported by the Research Council of University of Tehran.
Further Information

Publication History

Received: 16 June 2017

Accepted after revision: 19 August 2017

Publication Date:
15 September 2017 (online)


Abstract

A transition-metal-free oxidative cross-dehydrogenative coupling reaction has been developed for the preparation of symmetrical carboxylic anhydrides through self-coupling dual C–O bond formations of aryl methanols. In the presence of a catalytic amount of tetrabutylphosphonium bromide (TBPB) as transfer agent and aqueous tert-butyl hydroperoxide (TBHP) as oxidant and reactant, methylene groups of aryl methanols were efficiently oxidized to C=O and coupled with the peroxide oxygen from TBHP to form a diverse array of symmetrical carboxylic anhydride derivatives.

Supporting Information

 
  • References and Notes

    • 1a Dyker G. Handbook of C–H Transformations: Applications in Organic Synthesis. Wiley-VCH; Weinheim: 2005
    • 1b Yu JQ. Shi ZJ. C–H Activation . Springer; Berlin: 2010
    • 1c Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 1d Chen X. Engle KM. Wang DH. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1e Xu LM. Li BJ. Yang Z. Shi ZJ. Chem. Soc. Rev. 2010; 39: 712
    • 1f Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 1g Wencel-Delord J. Droge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1h Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1i Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1j Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1k Engle KM. Mei TS. Wasa M. Yu JQ. Acc. Chem. Res. 2012; 45: 788
    • 1l Dyker G. Angew. Chem. Int. Ed. 1999; 38: 1698
    • 1m Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 1n Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2a Li Z. Li CJ. J. Am. Chem. Soc. 2004; 126: 11810
    • 2b Li Z. Li CJ. Org. Lett. 2004; 6: 4997
    • 2c Zhao L. Li CJ. Angew. Chem. Int. Ed. 2008; 47: 7075
    • 2d Li Z. Li CJ. J. Am. Chem. Soc. 2005; 127: 6968
    • 2e Li Z. Li CJ. J. Am. Chem. Soc. 2005; 127: 3672
    • 2f Zhang Y. Li CJ. J. Am. Chem. Soc. 2006; 128: 4242
    • 2g Li Z. Li CJ. J. Am. Chem. Soc. 2006; 128: 56
    • 2h Deng G. Zhao L. Li CJ. Angew. Chem. Int. Ed. 2008; 47: 6278
    • 2i Zhang Y. Feng J. Li CJ. J. Am. Chem. Soc. 2008; 130: 2900
    • 2j Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 2k Correia CA. Li CJ. Adv. Synth. Catal. 2010; 352: 1446
    • 2l Girard SA. Knauber T. Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
    • 2m Shi ZJ. Li BJ. Chem. Soc. Rev. 2012; 41: 5588
    • 2n Zhang C. Tang CH. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 2o Sun CL. Li BJ. Shi ZJ. Chem. Rev. 2011; 111: 1293
    • 2p Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 2q Yang Y. Chen Z. Rao Y. Chem. Commun. 2014; 50: 15037
    • 2r Xiang CB. Bian YJ. Mao XR. Huang ZZ. J. Org. Chem. 2012; 77: 7706
    • 3a Yoneyama T. Crabtree RH. J. Mol. Catal. A: Chem. 1996; 108: 35
    • 3b Dick AR. Hull KL. Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 3c Desai LV. Hull KL. Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 3d Giri R. Liang J. Lei JG. Li JJ. Wang DH. Chen X. Naggar IC. Guo C. Foxman BM. Yu JQ. Angew. Chem. Int. Ed. 2005; 44: 7420
    • 3e Chen X. Hao XS. Goodhue CE. Yu JQ. J. Am. Chem. Soc. 2006; 128: 6790
    • 3f Ye Z. Wang W. Luo F. Zhang S. Cheng J. Org. Lett. 2009; 11: 3974
    • 3g Ali W. Rout SK. Guin S. Modi A. Banerjee A. Patel BK. Adv. Synth. Catal. 2015; 357: 515
    • 3h Wu Y. Wang J. Mao F. Kwong FY. Chem. Asian J. 2014; 6: 26
    • 4a Uyanik M. Suzuki D. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331
    • 4b Shi E. Shao Y. Chen S. Hu H. Liu Z. Zhang J. Wan X. Org. Lett. 2012; 14: 3384
    • 4c Siddaraju Y. Lamani M. Prabhu KR. J. Org. Chem. 2014; 79: 3856
    • 4d Rajamanickam S. Majji G. Santra SK. Patel BK. Org. Lett. 2015; 17: 5586
    • 4e Majji G. Guin S. Gogoi A. Rout SK. Patel BK. Chem. Commun. 2013; 49: 3031
    • 4f Yuan Y. Hou W. Zhang-Negrerie D. Zhao K. Du Y. Org. Lett. 2014; 16: 5410
    • 4g Zheng Z. Dian L. Yuan Y. Zhang-Negrerie D. Du Y. Zhao K. J. Org. Chem. 2014; 79: 7451
    • 5a Kalyani D. Sanford MS. Org. Lett. 2005; 7: 4149
    • 5b Gogoi A. Sau P. Ali W. Guin S. Patel BK. Eur. J. Org. Chem. 2016; 1449
    • 5c Zhang C. Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 5d Wang YF. Chen H. Zhu X. Chiba S. J. Am. Chem. Soc. 2012; 134: 11980
    • 5e Thirunavukkarasu VS. Ackermann L. Org. Lett. 2012; 14: 6206
    • 5f Du FT. Ji JX. Chem. Sci. 2012; 3: 460
    • 5g Yuan C. Liang Y. Hernandez T. Berriochoa A. Houk KN. Siegel D. Nature (London, U.K.) 2013; 499: 192
    • 5h Poladura B. Martínez-Castañeda Á. Rodríguez-Solla H. Llavona R. Concellón C. del Amo V. Org. Lett. 2013; 15: 2810
    • 5i Liang YF. Wang X. Yuan Y. Liang Y. Li X. Jiao N. ACS Catal. 2015; 5: 6148
    • 6a Rout SK. Guin S. Banerjee A. Khatun N. Gogoi A. Patel BK. Org. Lett. 2013; 15: 4106
    • 6b Wu Y. Choy PY. Mao F. Kwong FY. Chem. Commun. 2013; 49: 689
    • 6c Majji G. Guin S. Rout SK. Behera A. Patel BK. Chem. Commun. 2014; 50: 12193
    • 6d Banerjee A. Santra SK. Khatun N. Ali W. Patel BK. Chem. Commun. 2015; 51: 15422
    • 6e Ouyang XH. Song RJ. Li Y. Liu B. Li JH. J. Org. Chem. 2014; 79: 4582
    • 6f Rout SK. Guin S. Ali W. Gogoi A. Patel BK. Org. Lett. 2014; 16: 3086
    • 6g Gogoi A. Modi A. Guin S. Rout SK. Das D. Patel BK. Chem. Commun. 2014; 50: 10445
    • 7a Nordstrøm LU. Vogt H. Madsen R. J. Am. Chem. Soc. 2008; 130: 17672
    • 7b Xiao F. Shuai Q. Zhao F. Basle O. Deng G. Li CJ. Org. Lett. 2011; 13: 1614
    • 7c Xiao F. Liu Y. Tang C. Deng GJ. Org. Lett. 2012; 14: 984
    • 7d Fu Z. Lee J. Kang B. Hong SH. Org. Lett. 2012; 14: 6028
    • 7e Kang B. Fu Z. Hong SH. J. Am, Chem. Soc. 2013; 135: 11704
    • 7f Wang N. Zou X. Ma J. Li F. Chem. Commun. 2014; 50: 8303
    • 7g Omuraa R. Fujiyaa A. Yamaguchia E. Tadaa N. Miurab T. Itoh A. Synthesis 2016; 48: 3971
    • 8a Khatun N. Santra SK. Banerjee A. Patel BK. Eur. J. Org. Chem. 2015; 1309
    • 8b Saberi D. Shojaeyan F. Niknam K. Tetrahedron Lett. 2016; 57: 566
    • 8c Nuree Y. Singha R. Ghosh M. Roy P. Ray JK. Tetrahedron Lett. 2016; 57: 1479
    • 8d Singha R. Ghosh M. Nuree Y. Ray JK. Tetrahedron Lett. 2016; 57: 1325
    • 10a Adib M. Pashazadeh R. Rajai-Daryasarei S. Kabiri R. Gohari SJ. A. Synlett 2016; 27: 2241
    • 10b Adib M. Rajai-Daryasarei S. Pashazadeh R. Tajik M. Mirzaei P. Tetrahedron Lett. 2016; 57: 3701
    • 10c Adib M. Pashazadeh R. Rajai-Daryasarei S. Kabiri R. Jahani M. RSC Adv. 2016; 6: 110656
  • 11 Adib M. Pashazadeh R. Rajai-Daryasarei S. Mirzaei P. Gohari SJ. A. Tetrahedron Lett. 2016; 57: 3071
  • 12 General Procedure for the Synthesis of Benzoic Anhydride (2a) In a 5 mL sealed tube, TBPB (30 mol%, 0.041 g) and TBHP (70 wt% in H2O, 1.0 mmol, 0.131 g) were added to a solution of benzyl alcohol (1a, 0.4 mmol, 0.043 g) in chlorobenzene (1 mL). The resultant mixture was heated at 80 °C for 2.5 h. After completion of the reaction, as indicated by TLC monitoring, the reaction mixture was cooled to ambient temperature and sat. NaHCO3 (2 mL) was added. The product was extracted with EtOAc (2 × 3 mL). The combined organic phases were dried over Na2SO4, filtered, and the solvent was removed under reduced pressure. The residue was purified by column chromatography using n-hexane–EtOAc (15:1) as eluent to afford pure product 2a as a white solid (yield 90%); mp 44–45 °C. 1H NMR (300.1 MHz, CDCl3): δ = 7.55 (t, J = 7.6 Hz, 4 H), 7.70 (t, J = 7.5 Hz, 2 H), 8.18 (d, J = 7.8 Hz, 4 H). 13C NMR (100.6 MHz, CDCl3): δ = 128.8, 128.9, 130.5, 134.6, 162.4.
    • 13a Jones CM. Burkitt MJ. J. Am. Chem. Soc. 2003; 125: 6946
    • 13b Uyanik M. Okamoto H. Yasui T. Ishihara K. Science 2010; 328: 1376
    • 13c Feng J. Liang S. Chen SY. Zhang J. Fu SS. Yu XQ. Adv. Synth. Catal. 2012; 354: 1287
    • 13d Liu Z. Zhang J. Chen S. Shi E. Xu Y. Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
    • 13e Li H. Xie J. Xue Q. Cheng Y. Zhu C. Tetrahedron Lett. 2012; 53: 6479
    • 13f Gan L. Huang S. Zhang X. Zhang A. Cheng B. Cheng H. Li X. Shang G. J. Am. Chem. Soc. 2002; 124: 13384
    • 14a Wei W. Zhang C. Xu Y. Wan X. Chem. Commun. 2011; 47: 10827
    • 14b Zhang H. Dong DQ. Hao SH. Wang ZL. RSC Adv. 2016; 6: 8465