Synlett 2018; 29(02): 251-255
DOI: 10.1055/s-0036-1590914
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Allylation of Polyfluoroarenes with Allylic Pivalates

Xinpeng Jiang
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Yong Liu
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Lei Zhang
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Jinkang Chen
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Kang Cheng
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: ycm@zjut.edu.cn
› Institutsangaben
This work was supported by the National Natural Science Foundation of China (NSFC) (grants numbers 21676252 and 21506191).
Weitere Informationen

Publikationsverlauf

Received: 04. Juli 2017

Accepted after revision: 03. September 2017

Publikationsdatum:
19. September 2017 (online)


Abstract

An efficient 1,5-cyclooctadiene–PdCl2/dicyclohexyl(2′,4′,6′-triisopropylbiphenyl-2-yl)phosphine (XPhos) catalytic system was developed for C–H allylation of polyfluoroarenes with allylic pivalates. The reactions showed excellent functional-group tolerance, good yields, and high regioselectivities. Mechanistic investigations supported a (π-allyl)palladium complex pathway through a directed oxidative addition of the allylic pivalate to palladium, followed by sequential nucleophilic attack by the polyfluorobenzene and reductive elimination. In a gram-scale reaction, a palladium loading of 0.5 mol% was enough to afford the required product in good yield.

Supporting Information

 
  • References and Notes

    • 1a Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1b Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 1c Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 1d Jiang T. Zhou Y. Chen Z. Sun P. Zhu J. Zhang Q. Wang Z. Shao Q. Jiang X. Li B. Chen K. Jiang H. Wang H. Zhu W. Shen J. ACS Med. Chem. Lett. 2015; 6: 602
    • 1e Schwehm C. Li J. Song H. Hu X. Kellam B. Stocks MJ. ACS Med. Chem. Lett. 2015; 6: 324
    • 1f Hansen KB. Hsiao Y. Xu F. Rivera N. Clausen A. Kubryk M. Krska S. Rosner T. Simmons B. Balsells J. Ikemoto N. Sun Y. Spindler F. Malan C. Grabowski EJ. J. Armstrong JD. III. J. Am. Chem. Soc. 2009; 131: 8798
  • 2 Jia X. Wang J. Ding X. Yang J. Li N. Zhao N. Huang Z. J. Org. Chem. 2015; 80: 10874
    • 3a Meyer EA. Castellano RK. Diederich F. Angew. Chem. Int. Ed. 2003; 42: 1210
    • 3b Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 3c Babudri F. Farinola GM. Naso F. Ragni R. Chem. Commun. 2007; 1003
    • 4a Roberts RM. Khalaf AA. Friedel–Crafts Alkylation Chemistry: A Century of Discovery . Marcel Dekker; New York: 1984
    • 4b Kodomari M. Nawa S. Miyoshi T. J. Chem. Soc., Chem. Commun. 1995; 1895
    • 4c Hayashi R. Cook GR. Org. Lett. 2007; 9: 1311
    • 5a Weaver J. Senaweera S. Tetrahedron 2014; 70: 7413
    • 5b Ahrens T. Kohlmann J. Ahrens M. Braun T. Chem. Rev. 2015; 115: 931
    • 5c Amii H. Uneyama K. Chem. Rev. 2009; 109: 2119
    • 5d Lafrance M. Rowley CN. Woo TK. Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
    • 5e He M. Soulé J.-F. Doucet H. ChemCatChem 2014; 6: 1824
    • 5f Fang X. Huang Y. Chen X. Lin X. Bai Z. Huang K.-W. Yuan Y. Weng Z. J. Fluorine Chem. 2013; 151: 50
    • 5g Sun L. Rong M. Kong D. Bai Z. Yuan Y. Weng Z. J. Fluorine Chem. 2013; 150: 117
  • 6 For a recent review, see: Cristina Silva Costa D. Arab. J. Chem. 2017; DOI: 10.1016/j.arabjc.2017.07.017.
  • 8 Fan S. Chen F. Zhang X. Angew. Chem. Int. Ed. 2011; 50: 5918
  • 9 Yu Y.-B. Fan S. Zhang X. Chem. Eur. J. 2012; 18: 14643
  • 10 Yao T. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2011; 50: 2990
  • 11 Xie W. Chang S. Angew. Chem. Int. Ed. 2016; 55: 1876
    • 12a Yang G. Yu Z. Jiang X. Yu C. Tetrahedron Lett. 2015; 56: 4689
    • 12b Yang G. Jiang X. Liu Y. Li N. Yin G. Yu C. Asian J. Org. Chem. 2016; 5: 882
    • 12c Yang G.-H. Liu M. Li N. Wu R. Chen X. Pan L.-L. Gao S. Huang X. Wang C. Yu C.-M. Eur. J. Org. Chem. 2015; 616
  • 13 Yu C. Hu G. Zhang C. Wu R. Ye H. Yang G. Shi X. J. Fluorine Chem. 2013; 153: 33
  • 14 1,2,3,4,5-Pentafluoro-6-[(2E)-3-phenylprop-2-en-1-yl]benzene (4a); Typical Procedure COD–PdCl2 (5 mol%), XPhos (10 mol%), Cs2CO3 (1.2 mmol, 1.2 equiv), and toluene (3 mL) were added sequentially to a Schlenk tube containing allylic pivalate (E)-3a (1.0 mmol, 1.0 equiv) and pentafluorobenzene (1a; 2.0 mmol, 2.0 equiv) under argon, and the mixture was stirred at 120 ℃ (oil bath) for 8 h until the reaction was complete (TLC). The mixture was then diluted with EtOAc (40 mL), washed with brine (3 × 20 mL), and dried (Na2SO4). After filtration and evaporation of the solvent, the residue was purified by chromatography (silica gel, hexane) to give a white solid; yield: 279 mg (98%); mp 62–64 °C. 1H NMR (600 MHz, CDCl3): δ = 7.33–7.25 (m, 4 H), 7.24–7.20 (m, 1 H), 6.47 (d, J = 15.7 Hz, 1 H), 6.21 (dt, J = 15.7, 6.7 Hz, 1 H), 3.59 (dd, J = 6.7, 1.3 Hz, 2 H). 13C NMR (151 MHz, CDCl3): δ = 145.00 (dm, J = 246.4 Hz), 139.87 (dm, J = 252.4 Hz), 137.52 (dm, J = 250.4 Hz), 136.57, 132.44, 128.55, 127.64, 126.19, 124.24, 113.23 (t, J = 19.1 Hz), 25.60. 19F NMR (565 MHz, CDCl3): δ = –143.90 (dd, J = 22.3, 8.4 Hz, 2 F), –157.23 (t, J = 22.3 Hz, 1 F), –162.48 (td, J = 22.3, 8.4 Hz, 2 F). MS (EI): m/z = 284 [M]+.