Synthesis 2018; 50(02): 241-253
DOI: 10.1055/s-0036-1590915
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis of Benzimidazole Derivatives from the Oxidative Coupling of Primary Amines

UMR 8638 CNRS-Université Paris Descartes (Paris 5), Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 avenue de l’Observatoire, 75270 Paris cedex 06, France   Email: martine.largeron@parisdescartes.fr
,
Khac Minh Huy Nguyen
› Author Affiliations
Further Information

Publication History

Received: 30 August 2017

Accepted after revision: 01 September 2017

Publication Date:
21 September 2017 (online)


Abstract

Benzimidazole belongs to the top five most commonly used five-membered aromatic nitrogen heterocycles among U.S. FDA approved pharmaceuticals. Over the last few years, a large number of improved synthetic strategies have been developed to construct the benz­imidazole molecular framework under environmentally benign conditions. This review focuses on the use of primary amines as readily available substrates for the synthesis of benzimidazole derivatives through different types of oxidative cross-coupling reactions.

1 Introduction

2 Catalyst-Free Oxidative Coupling of Primary Amines

3 Catalytic Oxidative Coupling of Primary Amines

3.1 Metal-Catalyzed Reactions

3.2 Metal-Free Catalyzed Reactions

3.3 Bioinspired Catalyzed Reactions

4 Conclusion

 
  • References

  • 1 New address: K. M. H. Nguyen, Institut de Biologie Intégrative de la Cellule, UMR 9198 CEA, CNRS, Université Paris Sud, 91191 CEA-Saclay, Gif-sur-Yvette, France.
  • 3 Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 4 For a review, see: Preston PN. Chem. Rev. 1974; 74: 279
    • 5a Preston PN. Benzimidazoles . In The Chemistry of Heterocyclic Compounds . Weissenberger A. Taylor EC. Wiley; New York: 1981: 1
    • 5b Banerjee M. Chatterjee A. Kumar V. Bhutia ZT. Khandare DG. Majik MS. Roy BG. RSC Adv. 2014; 4: 39606

      For selected examples, see:
    • 6a Curini M. Epifano F. Montanari F. Rosati O. Taccone S. Synlett 2004; 1832
    • 6b Chen Y.-X. Qian L.-F. Zhang W. Han B. Angew. Chem. Int. Ed. 2008; 47: 9330
    • 6c Samanta S. Das S. Biswas P. J. Org. Chem. 2013; 78: 11184
    • 6d Bai G. Lan X. Liu X. Liu C. Shi L. Chen Q. Chen G. Green Chem. 2014; 16: 3160
    • 6e Sharma H. Singh N. Jang DO. Green Chem. 2014; 16: 4922
    • 6f Nagasawa Y. Matsusaki Y. Hotta T. Nobuta T. Tada N. Miura T. Itoh A. Tetrahedron Lett. 2014; 55: 6543
    • 6g Ghosh P. Subba R. Tetrahedron Lett. 2015; 56: 2691
    • 6h Lee Y.-S. Cho Y.-H. Lee SJ. Bin J.-K. Yang JH. Chae GS. Cheon C.-H. Tetrahedron 2015; 71: 532
    • 6i Cimarelli C. Di Nicola M. Diomedi S. Giovannini R. Hamprecht D. Properzi R. Sorana F. Marcantoni E. Org. Biomol. Chem. 2015; 13: 11687
    • 6j Lee Y.-S. Cheon C.-H. Adv. Synth. Catal. 2015; 357: 2951
    • 6k Katla R. Chowrasia R. Manjari PS. Domingues NL. C. RSC Adv. 2015; 5: 41716
    • 6l Pramanik N. Sarkar S. Roy D. Debnath S. Ghosh S. Khamarui S. Maiti DK. RSC Adv. 2015; 5: 101959
    • 6m Wade AR. Pawar HR. Biware MV. Chikate RC. Green Chem. 2015; 17: 3879
    • 6n Bala M. Kumar Verma P. Sharma D. Kumar N. Singh B. Mol. Divers. 2015; 19: 263
    • 6o Tian X. Song L. Li E. Wang Q. Yu W. Chang J. RSC Adv. 2015; 5: 62194
    • 6p Mahesh D. Sadhu P. Punniyamurthy T. J. Org. Chem. 2016; 81: 3227
    • 6q Azizian J. Torabi P. Noei J. Tetrahedron Lett. 2016; 57: 185
    • 6r Smitha G. Sreekumar K. RSC Adv. 2016; 6: 18141
    • 6s Rojas-Buzo S. Garcia-Garcia P. Corma A. ChemCatChem 2017; 9: 997
    • 6t Martins GM. Puccinelli T. Gariani RA. Xavier FR. Silveira CC. Mendes SR. Tetrahedron Lett. 2017; 58: 1969

      For recent examples, see:
    • 7a Chebolu R. Kommi DN. Kumar D. Bollineni N. Chakraborti AK. J. Org. Chem. 2012; 77: 10158
    • 7b Kumar TB. Sumanth Ch. Dhanunjaya Rao AV. Kalita D. Srinivasa Rao M. Chandra Sekhar KB. Shiva Kumar K. Pal M. RSC Adv. 2012; 2: 11510
    • 7c Kumar D. Kommi DN. Chebolu R. Garg SK. Kumar R. Chakraborti AK. RSC Adv. 2013; 3: 91
    • 7d Maleki A. Ghamani N. Kamalzare M. RSC Adv. 2014; 4: 9416
    • 7e Majumdar S. Chakraborty M. Pramanik N. Maiti DK. RSC Adv. 2015; 5: 51012
    • 7f Sharma H. Kaur N. Singh N. Jang DO. Green Chem. 2015; 17: 4263
    • 7g Hu Z. Zhao T. Wang M. Wu J. Yu W. Chang J. J. Org. Chem. 2017; 82: 3152

      For a recent review, see:
    • 8a Carvalho LC. R. Fernandes E. Marques MM. B. Chem. Eur. J. 2011; 17: 12544 ; and references cited therein

    • For selected recent examples, see:
    • 8b Pizzeti M. De Luca E. Petricci E. Porcheddu A. Taddei M. Adv. Synth. Catal. 2012; 354: 2453
    • 8c Jui NT. Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 11624
    • 8d Kommi D. Jadhavar PD. Kumar D. Chakraborti AK. Green Chem. 2013; 15: 798
    • 8e Tran LQ. Li J. Neuville L. J. Org. Chem. 2015; 80: 6102
    • 8f Xia Y. Lin L. Chang F. Liao Y. Liu X. Feng X. Angew. Chem. Int. Ed. 2016; 55: 12228
    • 8g Hu B. Dong W. Feng Z. Gao X. Gao H. Xie X. Zhang Z. Asian J. Org. Chem. 2016; 5: 1467
    • 8h Zurita DA. Flores-Alamo M. Garcia JJ. Dalton Trans. 2016; 45: 10389
    • 8i Xia J. Yang X. Li Y. Li X. Org. Lett. 2017; 19: 3243
    • 8j Xie C. Han X. Gong J. Li D. Ma C. Org. Biomol. Chem. 2017; 15: 5811

      For selected recent examples, see:
    • 9a Zheng N. Anderson KW. Huang X. Nguyen HN. Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7509
    • 9b Zou B. Yuan Q. Ma D. Angew. Chem. Int. Ed. 2007; 46: 2598
    • 9c Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 9d Saha P. Ramana T. Purkait N. Ashif Ali Md. Paul R. Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
    • 9e Hirano K. Biju AT. Glorius F. J. Org. Chem. 2009; 74: 9570
    • 9f Saha P. Ashif Ali Md. Ghosh P. Punniyamurthy T. Org. Biomol. Chem. 2010; 8: 5692
    • 9g Zhao D. Hu J. Wu N. Huang X. Qin X. Lan J. You J. Org. Lett. 2011; 13: 6516
    • 9h Li J. Bénard S. Neuville L. Zhu J. Org. Lett. 2012; 14: 5980
    • 9i Kumar Alla S. Kiran Kumar R. Sadhu P. Punniyamurthy T. Org. Lett. 2013; 15: 1334
    • 9j Baars H. Beyer A. Kohlhepp SV. Bolm C. Org. Lett. 2014; 16: 536
    • 9k Lin J.-P. Zhang F.-H. Long Y.-Q. Org. Lett. 2014; 16: 2822
    • 9l Sun M. Chen C. Bao W. RSC Adv. 2014; 4: 47373
    • 9m Li J. Gu H. Wu C. Du L. Dalton Trans. 2014; 43: 16769

      For selected recent examples, see:
    • 10a Blacker AJ. Farah MM. Hall MI. Marsden SP. Saidi O. Williams JM. J. Org. Lett. 2009; 11: 2039
    • 10b Moorthy JN. Neogi I. Tetrahedron Lett. 2011; 52: 3868
    • 10c Lan Y.-S. Liao B.-S. Liu Y.-H. Peng S.-M. Liu S.-T. Eur. J. Org. Chem. 2013; 5160
    • 10d Yu J. Xu J. Lu M. Appl. Organomet. Chem. 2013; 27: 606
    • 10e Wang H. Zhang J. Cui Y.-M. Yang K.-F. Zheng Z.-J. Xu L.-W. RSC Adv. 2014; 4: 34681
    • 10f Ramachandran R. Prakash G. Selvamurugan S. Viswanathamurthi P. Malecki JG. Ramkumar V. Dalton Trans. 2014; 43: 7889
    • 10g Reddy Marri M. Peraka S. Kumar Macharla A. Mameda N. Kodumuri S. Nama N. Tetrahedron Lett. 2014; 55: 6520
    • 10h Wang Z.-G. Xia Y.-G. Jin Y. Lu M. Appl. Organomet. Chem. 2015; 29: 109
    • 10i Shi X. Guo J. Liu J. Ye M. Xu Q. Chem. Eur. J. 2015; 21: 9988
    • 10j Lai Y.-L. Ye J.-S. Huang J.-M. Chem. Eur. J. 2016; 22: 5425
  • 11 Nguyen TB. Ermolenko L. Dean WA. Al-Mourabit A. Org. Lett. 2012; 14: 5948
  • 12 Nguyen TB. Ermolenko L. Al-Mourabit A. Green Chem. 2013; 15: 2713
  • 13 Yu J. Lu M. Synth. Commun. 2014; 44: 2520
  • 14 Tangella Y. Manasa KL. Sathish M. Alarifi A. Kamal A. ChemistrySelect 2016; 1: 2895
  • 15 Naresh G. Kant R. Narender T. J. Org. Chem. 2014; 79: 3821

    • For recent reviews, see:
    • 16a Wendlandt AE. Suess AM. Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 16b Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 16c Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 16d Subramanian P. Rudolf GC. Kaliappan KP. Chem. Asian J. 2016; 11: 168
    • 16e Fürstner A. ACS Cent. Sci. 2016; 2: 778
    • 16f Shang R. Ilies L. Nakamura E. Chem. Rev. 2017; 117: 9086
    • 17a Patil RD. Adimurthy S. Adv. Synth. Catal. 2011; 353: 1695
    • 17b Patil RD. Adimurthy S. RSC Adv. 2012; 2: 5119
  • 18 Xiao T. Xiong S. Xie Y. Dong X. Zhou L. RSC Adv. 2013; 3: 15592
  • 19 Liu J. Wang C. Ma X. Shi X. Wang X. Li H. Xu Q. Catal. Lett. 2016; 146: 2139
  • 20 Gopalaiah K. Saini A. Chandrudu SN. Rao DC. Yadav H. Kumar B. Org. Biomol. Chem. 2017; 15: 2259
  • 21 Zhang E. Tian H. Xu S. Yu X. Xu Q. Org. Lett. 2013; 15: 2704
  • 22 Yu J. Xia Y. Lu M. Synth. Commun. 2014; 44: 3019
  • 23 Hu Z. Kerton FM. Org. Biomol. Chem. 2012; 10: 1618
  • 24 Gopalaiah K. Chandrudu SN. RSC Adv. 2015; 5: 5015
  • 25 For a review, see: Su C. Loh KP. Acc. Chem. Res. 2013; 46: 2275
    • 26a Huang H. Huang J. Liu Y.-M. He H.-Y. Cao Y. Fan K.-N. Green Chem. 2012; 14: 930
    • 26b Su C. Acik M. Takai K. Lu J. Hao S.-J. Zheng Y. Wu P. Bao Q. Enoki T. Chabal YJ. Loh KP. Nat. Commun. 2012; 3: 1298
  • 27 Su C. Tandiana R. Balapanuru J. Tang W. Pareek K. Nai CT. Hayashi T. Loh KP. J. Am. Chem. Soc. 2015; 137: 685

    • For recent reviews, see:
    • 28a Lang X. Chen X. Zhao J. Chem. Soc. Rev. 2014; 43: 473
    • 28b Lang X. Ma W. Chen C. Ji H. Zhao J. Acc. Chem. Res. 2014; 47: 355

      For a recent review, see:
    • 29a Chen B. Wang L. Gao S. ACS Catal. 2015; 5: 5851 ; and references therein

    • See also:
    • 29b Ushakov DB. Plutschack MB. Gilmore K. Seeberger PH. Chem. Eur. J. 2015; 21: 6528
    • 29c Raza F. Park JH. Lee H.-R. Kim HI. Jeon S.-J. Kim J.-H. ACS Catal. 2016; 6: 2754
  • 30 Su F. Mathew SC. Möhlmann L. Antonietti M. Wang X. Blechert S. Angew. Chem. Int. Ed. 2011; 50: 657

    • For selected reviews, see:
    • 31a MacMillan DW. C. Nature (London) 2008; 455: 304
    • 31b Holland MC. Gilmour R. Angew. Chem. Int. Ed. 2015; 54: 3862
  • 32 Dong C.-P. Higashiura Y. Marui K. Kumazawa S. Nomoto A. Ueshima M. Ogawa A. ACS Omega 2016; 1: 799
  • 33 Sharma R. Abdullaha M. Bharate SB. Asian J. Org. Chem. 2017; in press; DOI: 10.1002/ajoc.201700214.
  • 34 Endo Y. Bäckvall J.-E. Chem. Eur. J. 2012; 18: 13609
  • 35 Janes SM. Mu D. Wemmer D. Smith AJ. Kaur S. Malty D. Burlingame AL. Klinman JP. Science (Washington, D. C.) 1990; 248: 981

    • For recent reviews or perspectives, see:
    • 36a Largeron M. Fleury M.-B. Science (Washington, D. C.) 2013; 339: 43
    • 36b Wendlandt AE. Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
    • 36c Largeron M. Org. Biomol. Chem. 2017; 15: 4722 ; and references therein

      For leading references about our electrochemical investigations, see:
    • 37a Largeron M. Fleury M.-B. J. Org. Chem. 2000; 65: 8874
    • 37b Largeron M. Neudörffer A. Vuilhorgne M. Blattes E. Fleury M.-B. Angew. Chem. Int. Ed. 2002; 41: 824
    • 37c Largeron M. Neudörffer A. Fleury M.-B. Angew. Chem. Int. Ed. 2003; 42: 1026
    • 37d Blattes E. Fleury M.-B. Largeron M. J. Org. Chem. 2004; 69: 882
    • 37e Xu D. Chiaroni A. Fleury M.-B. Largeron M. J. Org. Chem. 2006; 71: 6374
    • 37f Largeron M. Chiaroni A. Fleury M.-B. Chem. Eur. J. 2008; 14: 996
    • 37g Largeron M. Fleury M.-B. Org. Lett. 2009; 11: 883
    • 37h Largeron M. Fleury M.-B. Strolin Benedetti M. Org. Biomol. Chem. 2010; 8: 3796
  • 38 Piera J. Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
  • 39 Largeron M. Fleury M.-B. Angew. Chem. Int. Ed. 2012; 51: 5409
  • 40 Largeron M. Fleury M.-B. Chem. Eur. J. 2015; 21: 3815
  • 41 Nguyen KM. H. Largeron M. Chem. Eur. J. 2015; 21: 12606
  • 42 Nguyen KM. H. Largeron M. Eur. J. Org. Chem. 2016; 1025
  • 43 Sun Z. Bottari G. Barta K. Green Chem. 2015; 17: 5172
  • 44 For a recent review, see: Klinman JP. Bonnot F. Chem. Rev. 2014; 114: 4343
    • 45a Dürckeimer W. Paulus EF. Angew. Chem. Int. Ed. 1985; 24: 224
    • 45b Ellerbrock P. Armanino MK. Ilg R. Webster R. Trauner D. Nat. Chem. 2015; 7: 879
  • 46 Largeron M. Fleury M.-B. Chem. Eur. J. 2017; 23: 6763