Synlett 2018; 29(02): 157-168
DOI: 10.1055/s-0036-1590923
account
© Georg Thieme Verlag Stuttgart · New York

Construction of Benzylic Stereogenic Carbon Centers through Enantioselective Arylation Reactions

Ren-Rong Liu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]
,
Ren-Xiao Liang
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]
,
Yi-Xia Jia*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21372202, 21502169, and 21522207) and the Natural Science Foundation of Zhejiang Province (LR14B020001 and LQ15B020003) is acknowledged.
Further Information

Publication History

Received: 17 July 2017

Accepted after revision: 11 September 2017

Publication Date:
20 October 2017 (online)


Abstract

Compounds bearing chiral benzylic stereocenters are important and frequently occur in natural products and drug molecules. In this account, we discuss our recent results on the construction of ­benzylic stereogenic centers based on enantioselective arylation and related domino sequences, mainly including asymmetric Friedel–Crafts alkylation reactions and asymmetric Heck reactions.

1 Introduction

2 The Catalytic Asymmetric Friedel–Crafts Alkylation Reaction

2.1 Reactions of Electron-Deficient Alkenes

2.2 Reactions of Active Ketimines

2.3 Reactions of Nitrones

2.4 Reactions of Aziridines

3 The Asymmetric Heck Reaction

3.1 Dearomative Heck Reactions and Related Domino Sequences

3.2 Heck Reactions of in situ Formed Enamines

4 Conclusion and Outlook

 
  • References

    • 1a Pu L. Yu H.-B. Chem. Rev. 2001; 101: 757
    • 1b Denmark SE. Fu J. Chem. Rev. 2003; 103: 2763
    • 1c Garcia C. Martin VS. Curr. Org. Chem. 2006; 10: 1849
    • 1d Riant O. Hannedouche J. Org. Biomol. Chem. 2007; 5: 873
    • 1e Tian P. Dong H.-Q. Lin G.-Q. ACS Catal. 2012; 2: 95
    • 2a Roseblade SJ. Pfaltz A. Acc. Chem. Res. 2007; 40: 1402
    • 2b Cui X. Burgess K. Chem. Rev. 2005; 105: 3272
    • 2c Shibasaki M. Kanai M. Chem. Rev. 2008; 108: 2853
    • 2d Stymiest JL. Bagutski V. French RM. Aggarwal VK. Nature 2008; 456: 778
    • 2e Leonori D. Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 2f Chen J.-B. Jia Y.-X. Org. Biomol. Chem. 2017; 15: 3550
    • 3a Bonjoch J. Solé D. Chem. Rev. 2000; 100: 3455
    • 3b Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 3c Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 4a Bolm C. Hildebrand JP. Muniz K. Hermanns N. Angew. Chem. Int. Ed. 2001; 40: 3285
    • 4b Shibasaki M. Vogl EM. Ohshima T. Adv. Synth. Catal. 2004; 346: 1533
    • 4c Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
    • 4d Bhat V. Welin ER. Guo XL. Stoltz BM. Chem. Rev. 2017; 117: 4528
    • 5a Hayashi T. Synlett 2001; 879
    • 5b Hayashi T. Yamasaki K. Chem. Rev. 2003; 103: 2829
    • 5c Fagnou K. Lautens M. Chem. Rev. 2003; 103: 169
    • 5d Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 5e Edwards HJ. Hargrave JD. Penrose SD. Frost CG. Chem. Soc. Rev. 2010; 39: 2093
    • 5f Guduguntla S. Gualtierotti J.-B. Goh SS. Feringa BL. ACS Catal. 2016; 6: 6591
    • 6a Bigot A. Williamson AE. Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
    • 6b Harvey JS. Simonovich SP. Jamison CR. MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
    • 6c Zhu S. MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
    • 6d Cahard E. Male HP. J. Tissot M. Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 7986
    • 7a Bandini M. Umani-Ronchi A. Catalytic Asymmetric Friedel-Crafts Alkylations . Wiley-VCH; Weinheim: 2009
    • 7b Poulsen TB. Jørgensen KA. Chem. Rev. 2008; 108: 2903
    • 7c You S.-L. Cai Q. Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 7d Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 7e Terrasson V. Figueiredo RM. Campagne JM. Eur. J. Org. Chem. 2010; 2635
    • 8a Banwell MG. Beck DA. S. Willis AC. ARKIVOC 2006; (iii): 163
    • 8b Lyzwa D. Dudzinski K. Kwiatkowski P. Org. Lett. 2012; 14: 1540
    • 8c Liu R. Zhang J. Org. Lett. 2013; 15: 2266
    • 8d Arai T. Yamamoto Y. Awata A. Kamiya K. Ishibashi M. Arai MA. Angew. Chem. Int. Ed. 2013; 52: 2486
    • 8e Mori K. Wakazawa M. Akiyama T. Chem. Sci. 2014; 5: 1799
    • 9a Gao J.-R. Wu H. Xiang B. Yu W.-B. Han L. Jia Y.-X. J. Am. Chem. Soc. 2013; 135: 2983
    • 9b Weng J.-Q. Deng Q.-M. Wu L. Xu K. Wu H. Liu R.-R. Gao J.-R. Jia Y.-X. Org. Lett. 2014; 16: 776
    • 9c Wu H. Liu R.-R. Jia Y.-X. Synlett 2014; 25: 457
    • 10a Czekelius C. Carreira EM. Angew. Chem. Int. Ed. 2003; 42: 4793
    • 10b Wu J. Mampreian DM. Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 4584
    • 10c Martin NJ. A. Ozores L. List B. J. Am. Chem. Soc. 2007; 129: 8976
    • 10d Lu H.-H. Zhang F.-G. Meng X.-G. Duan S.-W. Xiao W.-J. Org. Lett. 2009; 11: 3946
    • 10e Zhang F.-G. Yang Q.-Q. Xuan J. Lu H.-H. Duan S.-W. Chen J.-R. Xiao W.-J. Org. Lett. 2010; 12: 5636
    • 10f Chen L.-A. Xu W. Huang B. Ma J. Wang L. Xi J. Harms K. Gong L. Meggers E. J. Am. Chem. Soc. 2013; 135: 10598
  • 11 Wu H. Sheng W.-J. Chen B. Liu R.-R. Gao J.-R. Jia Y.-X. Synlett 2015; 26: 2817
    • 12a Evans DA. Fandrick KR. Song HJ. Scheidt KA. Xu R. J. Am. Chem. Soc. 2007; 129: 10029
    • 12b Zeng M. Kang Q. He Q.-L. You S.-L. Adv. Synth. Catal. 2008; 350: 2169
    • 12c Kang Q. Zheng X.-J. You S.-L. Chem. Eur. J. 2008; 14: 3539
    • 12d Hong L. Liu C. Sun W. Wang L. Wong K. Wang R. Org. Lett. 2009; 11: 2177
    • 12e Hong L. Sun W. Liu C. Wang L. Wong K. Wang R. Chem. Eur. J. 2009; 15: 11105
    • 12f Sheng Y.-F. Li G.-Q. Kang Q. Zhang A.-J. You S.-L. Chem. Eur. J. 2009; 15: 3351
    • 12g Sakamoto T. Itoh J. Mori K. Akiyama T. Org. Biomol. Chem. 2010; 8: 5448
    • 12h Takenaka N. Chen J. Captain B. Sarangthem RS. Chandrakuma A. J. Am. Chem. Soc. 2010; 132: 4536
    • 12i Blay G. Fernández I. Muñoz MC. Pedro JR. Recuenco A. Vila C. J. Org. Chem. 2011; 76: 6286
  • 13 Wu H. Liu R.-R. Shen C. Zhang M.-D. Gao J.-R. Jia Y.-X. Org. Chem. Front. 2015; 2: 124
    • 14a Cheng H.-G. Lu L.-Q. Wang T. Yang Q.-Q. Liu X.-P. Li Y. Deng Q.-H. Chen J.-R. Xiao W.-J. Angew. Chem. Int. Ed. 2013; 52: 3250
    • 14b Zhang Y.-L. Liu X.-H. Zhao X.-H. Zhang J.-L. Zhou L. Lin L.-L. Feng X.-M. Chem. Commun. 2013; 49: 11311
    • 14c Ma H.-L. Li J.-Q. Sun L. Hou X.-H. Zhang Z.-H. Fu B. Tetrahedron 2015; 71: 3625
    • 14d Bi B. Lou Q.-X. Ding Y.-Y. Chen S.-W. Zhang S.-S. Hu W.-H. Zhao J.-L. Org. Lett. 2015; 17: 540
  • 15 Weng J.-Q. Fan R.-J. Deng Q.-M. Liu R.-R. Gao J.-R. Jia Y.-X. J. Org. Chem. 2016; 81: 3023
    • 16a Jia Y.-X. Zhong J. Zhu S.-F. Zhang C.-M. Zhou Q.-L. Angew. Chem. Int. Ed. 2007; 46: 5565
    • 16b Rueping M. Raja S. Núñez A. Adv. Synth. Catal. 2011; 353: 563
    • 16c Yin Q. You S.-L. Chem. Sci. 2011; 2: 1344
    • 16d Husmann R. Sugiono E. Mersmann S. Raabe G. Rueping M. Bolm C. Org. Lett. 2011; 13: 1044
    • 16e Qian Y. Jing C.-C. Zhai C.-W. Hu W.-H. Adv. Synth. Catal. 2012; 354: 301
    • 16f Kumar CV. S. Puranik VG. Ramana CV. Chem. Eur. J. 2012; 18: 9601
    • 16g Feng J.-C. Yan W.-J. Wang D. Li P. Sun Q.-T. Wang R. Chem. Commun. 2012; 48: 8003
  • 17 Wu L. Liu R.-R. Zhang G. Wang D.-J. Wu H. Gao J.-R. Jia Y.-X. Adv. Synth. Catal. 2015; 357: 709
  • 18 Liu R.-R. Ye S.-C. Lu C.-J. Zhuang G.-L. Gao J.-R. Jia Y.-X. Angew. Chem. Int. Ed. 2015; 54: 11205

    • For selected examples of asymmetric reactions catalyzed by gold/chiral phosphoric acids, see:
    • 19a Han Z.-Y. Xiao H. Chen X.-H. Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
    • 19b Liu X.-Y. Che C.-M. Org. Lett. 2009; 11: 4204
    • 19c Liu X.-Y. Che C.-M. Org. Lett. 2009; 11: 4204
    • 19d Muratore ME. Holloway CA. Pilling AW. Storer RI. Trevitt G. Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
    • 19e Wang C. Han Z.-Y. Luo H.-W. Gong L.-Z. Org. Lett. 2010; 12: 2266
    • 19f Hubbert C. Hashmi AS. K. Angew. Chem. Int. Ed. 2010; 49: 1010
    • 19g Han Z.-Y. Chen D.-F. Wang Y.-Y. Guo R. Wang P.-S. Wang C. Gong L.-Z. J. Am. Chem. Soc. 2012; 134: 6532
    • 19h Patil NT. Mutyala AK. Konala A. Tella RB. Chem. Commun. 2012; 48: 3094
    • 19i Wu H. He Y.-P. Gong L.-Z. Org. Lett. 2013; 15: 460
    • 19j Calleja J. González-Pérez AB. de Lera AR. Alvarez R. Fananás FJ. Rodríguez F. Chem. Sci. 2014; 5: 996
    • 20a Sun F.-L. Zeng M. Gu Q. You S.-L. Chem. Eur. J. 2009; 15: 8709
    • 20b Sun F.-L. Zheng X.-J. Gu Q. He Q.-L. You S.-L. Eur. J. Org. Chem. 2010; 47
    • 20c Wilcke D. Herdtweck E. Bach T. Synlett 2011; 1235
    • 20d Zhuo M.-H. Jiang Y.-J. Fan Y.-S. Gao Y. Liu S. Zhang S. Org. Lett. 2014; 16: 1096
    • 20e Qi S. Liu C.-Y. Ding J.-Y. Han F.-S. Chem. Commun. 2014; 50: 8605
    • 20f Zhao W. Wang Z. Chu B. Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
    • 20g Wang Z.-B. Wong YF. Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
    • 20h Liao H.-H. Chatupheeraphat A. Hsiao C.-C. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2015; 54: 15540
    • 20i Gong Y.-X. Wu Q. Zhang H.-H. Zhu Q.-N. Shi F. Org. Biomol. Chem. 2015; 13: 7993
    • 21a Pineschi M. Eur. J. Org. Chem. 2006; 4979
    • 21b Wang PA. Beilstein J. Org. Chem. 2013; 9: 1677
    • 21c Schneider C. Angew. Chem. Int. Ed. 2009; 48: 2082
    • 22a Yang D. Wang L. Han F. Li D. Zhao D. Cao Y. Ma Y. Kong W. Sun Q. Wang R. Chem. Eur. J. 2014; 20: 16478
    • 22b Wang L. Yang D. Han F. Li D. Zhao D. Wang R. Org. Lett. 2015; 17: 176
    • 22c Chai Z. Zhu Y.-M. Yang P.-J. Wang S. Wang S. Liu Z. Yang G. J. Am. Chem. Soc. 2015; 137: 10088
  • 23 Ge C. Liu R.-R. Gao J.-R. Jia Y.-X. Org. Lett. 2016; 18: 3122
    • 24a Liu R.-R. Wang D.-J. Wu L. Xiang B. Zhang G.-Q. Gao J.-R. Jia Y.-X. ACS Catal. 2015; 5: 6524
    • 24b Xiang B. Xu T.-F. Wu L. Liu R.-R. Gao J.-R. Jia Y.-X. J. Org. Chem. 2016; 89: 3929
    • 24c Liu R.-R. Zhu L. Hu J.-P. Lu C.-J. Gao J.-R. Lan Y. Jia Y.-X. Chem. Commun. 2017; 53: 5890
    • 24d Liu R.-R. Hu J.-P. Hong J.-J. Lu C.-J. Gao J.-R. Jia Y.-X. Chem. Sci. 2017; 8: 2811
    • 25a Sato Y. Sodeoka M. Shibasaki M. J. Org. Chem. 1989; 54: 4738
    • 25b Carpenter NE. Kucera DJ. Overman LE. J. Org. Chem. 1989; 54: 5846
    • 26a Dounay AB. Overman LE. Chem. Rev. 2003; 103: 2945
    • 26b Cartney DM. Guiry P. Chem. Soc. Rev. 2011; 40: 5122
    • 26c Mei T.-S. Patel HH. Sigman MS. Nature 2014; 508: 340
    • 26d The Mizoroki-Heck Reaction . Oestreich M. John Wiley & Sons; Chichester: 2009

      For reviews of enantioselective dearomatization reactions, see:
    • 27a Zhuo C.-X. Zhang W. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 27b Zhuo C.-X. Zheng C. You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 27c Wu W.-T. Zhang L. You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 28a Maeda K. Farrington EJ. Galardon E. John BD. Brown JM. Adv. Synth. Catal. 2002; 344: 104
    • 28b Glover B. Harvey AK. Liu B. Sharp JM. Tymoschenko MF. Org. Lett. 2003; 5: 301
    • 28c Lautens M. Fang YQ. Org. Lett. 2003; 5: 3679
    • 28d Wang J.-X. McCubbin JA. Jin M. Laufer RS. Mao Y. Crew AP. Mulvihill MJ. Snieckus V. Org. Lett. 2008; 10: 2923
    • 28e Ueda K. Yanagisawa S. Yamaguchi J. Itami K. Angew. Chem. Int. Ed. 2010; 49: 8946
    • 28f Tang S.-Y. Guo Q.-X. Fu Y. Chem. Eur. J. 2011; 17: 13866
  • 29 Shen C. Liu R.-R. Fan R.-J. Li Y.-L. Xu T.-F. Gao J.-R. Jia Y.-X. J. Am. Chem. Soc. 2015; 137: 4936
  • 30 Liu R.-R. Xu Y. Liang R.-X. Xiang B. Xie H.-J. Gao J.-R. Jia Y.-X. Org. Biomol. Chem. 2017; 15: 2711
  • 31 Zhao L. Li Z. Chang L. Xu J. Yao H. Wu X. Org. Lett. 2012; 14: 2066
  • 32 Douki K. Ono H. Taniguchi T. Shimokawa J. Kitamura M. Fukuyama T. J. Am. Chem. Soc. 2016; 138: 14578
    • 33a Petrone DA. Yen A. Zeidan N. Lautens M. Org. Lett. 2015; 17: 4838
    • 33b Petrone DA. Kondo M. Zeidan N. Lautens M. Chem. Eur. J. 2016; 22: 5684
    • 33c Chen S. Wu X.-X. Wang J. Hao X.-H. Xia Y. Shen Y. Jing H. Liang Y.-M. Org. Lett. 2016; 18: 4016
    • 33d Liu R.-R. Xu T.-F. Wang Y.-G. Xiang B. Gao J.-R. Jia Y.-X. Chem. Commun. 2016; 52: 13664
    • 33e Wang Y.-G. Liu R.-R. Gao J.-R. Jia Y.-X. Chin. J. Org. Chem. 2017; 37: 691
  • 34 Liu R.-R. Wang Y.-G. Li Y.-L. Huang B.-B. Liang R.-X. Jia Y.-X. Angew. Chem. Int. Ed. 2017; 56: 7475
    • 35a Bellina F. Rossi R. Chem. Rev. 2010; 110: 1082
    • 35b Johansson CC. C. Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 35c Burtoloso AC. B. Synlett 2009; 320
    • 35d Zhou J. Synlett 2012; 1
    • 36a Palucki M. Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
    • 36b Hamann BC. Hartwig JF. J. Am. Chem. Soc. 1997; 119: 12382
    • 36c Satoh T. Kawamura Y. Miura M. Nomura M. Angew. Chem. Int. Ed. 1997; 36: 1740
    • 36d Liu X. Hartwig JF. J. Am. Chem. Soc. 2004; 126: 5182
    • 36e Chen G. Kwong FY. Chan HO. Yu W.-Y. Chan AS. C. Chem. Commun. 2006; 1413
    • 36f Kündig EP. Seidel TM. Jia Y.-X. Bernardinelli G. Angew. Chem. Int. Ed. 2007; 46: 8484
    • 36g Garcia-Fortanet J. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 8108
    • 36h Jia Y.-X. Hillgren JM. Watson EL. Marsden SP. Kündig EP. Chem. Commun. 2008; 4040
    • 36i Jia Y.-X. Katayev D. Bernardinelli G. Seidel TM. Kündig EP. Chem. Eur. J. 2010; 16: 6300
    • 36j Nareddy P. Mantilli L. Guénée L. Mazet C. Angew. Chem. Int. Ed. 2012; 51: 3826
    • 36k Ge S. Chaładaj W. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4149
    • 36l Cornella J. Jackson EP. Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075
  • 37 For a racemic arylation of cyclopentanones via a C–H activation mechanism, see: Xu Y. Su T. Huang Z. Dong G. Angew. Chem. Int. Ed. 2016; 55: 2559
  • 38 Liu R.-R. Li B.-L. Lu J. Shen C. Gao J.-R. Jia Y.-X. J. Am. Chem. Soc. 2016; 138: 5198
  • 39 Li B.-L. Liu R.-R. Liang R.-X. Jia Y.-X. Acta Chim. Sinica 2017; 75: 448