Synlett 2018; 29(03): 364-368
DOI: 10.1055/s-0036-1590925
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Chemoselective Synthesis of α-Chloro and Vinyl Sulfones by Sulfonylation of Alkenes

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: niutf@jiangnan.edu.cn   Email: byron_ni@yeah.net
,
Dan Lin
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: niutf@jiangnan.edu.cn   Email: byron_ni@yeah.net
,
Lin-shuang Xue
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: niutf@jiangnan.edu.cn   Email: byron_ni@yeah.net
,
Ding-yun Jiang
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: niutf@jiangnan.edu.cn   Email: byron_ni@yeah.net
,
Bang-qing Ni*
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: niutf@jiangnan.edu.cn   Email: byron_ni@yeah.net
› Author Affiliations
The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province, China (BK20160164) for financial support.
Further Information

Publication History

Received: 28 July 2017

Accepted after revision: 11 September 2017

Publication Date:
20 October 2017 (online)


Abstract

Direct sulfonylation between alkenes and sulfonyl chloride was achieved at room temperature by a visible-light-induced photo­redox process. This method allows the chemoselective synthesis of α-chloro and vinyl sulfone derivatives with moderate to high yields. The selectivity of the reaction was fully controlled by the electronic properties of the alkenes.

Supporting Information

 
  • References and Notes

    • 1a Iqbal J. Bhatia B. Nayyar NK. Chem. Rev. 1994; 94: 519
    • 1b Clark A. J. Chem. Soc. Rev. 2002; 31: 1
    • 1c Pintauer T. Matyjaszewski K. Chem. Soc. Rev. 2008; 37: 1087
    • 2a Quebatte L. Thommes K. Severin K. J. Am. Chem. Soc. 2006; 128: 7440
    • 2b Weidner GK. Giroult A. Panchaud P. Renaud P. J. Am. Chem. Soc. 2010; 132: 17511
    • 2c Muñoz-Molina JM. Belderraín TM. Pérez PJ. Eur. J. Inorg. Chem. 2011; 21: 3155
    • 2d Belhomme M.-C. Dru D. Xiong H.-Y. Cahard D. Besset T. Poisson T. Pannecoucke X. Synthesis 2014; 46: 1859
    • 2e Cheung CW. Hu X. Chem. Eur. J. 2015; 21: 18439
    • 2f Che C. Zheng H. Zhu G. Org. Lett. 2015; 17: 1617
    • 3a Fang X. Yang X. Yang X. Mao S. Wang Z. Chen G. Wu F. Tetrahedron 2007; 63: 10684
    • 3b Fernández-Zúmel MA. Buron C. Severin K. Eur. J. Org. Chem. 2011; 12: 2272
    • 3c Sumino S. Fusano A. Ryu I. Org. Lett. 2013; 15: 2826
    • 3d Ovadia B. Robert F. Landais Y. Org. Lett. 2015; 17: 1958
    • 3e Xu T. Cheung CW. Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
    • 3f Wang Y.-Q. He Y.-T. Zhang L.-L. Wu X.-X. Liu X.-Y. Liang Y.-M. Org. Lett. 2015; 17: 4280
    • 3g Li G. Cao YX. Luo CG. Su YM. Li Y. Lan Q. Wang XS. Org. Lett. 2016; 18: 4806
    • 4a Nguyen JD. Tucker JW. Konieczynska MD. Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
    • 4b Wallentin C.-J. Nguyen JD. Finkbeiner P. Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 4c Pirtsch M. Paria S. Matsuno T. Isobe H. Reiser O. Chem. Eur. J. 2012; 18: 7336
    • 4d Knorn M. Rawner T. Czerwieniec R. Reiser O. ACS Catal. 2015; 5: 5186
    • 4e Arceo E. Montroni E. Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 12064
    • 4f Riente P. Pericàs MA. ChemSusChem 2015; 8: 1841
    • 4g Oh SH. Malpani YR. Ha N. Jung Y.-S. Han SB. Org. Lett. 2014; 16: 1310
    • 4h Carboni C. Dagousset G. Magnier E. Masson G. Synthesis 2015; 47: 2439
    • 4i Tang X.-J. Dolbier WR. Jr. Angew. Chem. Int. Ed. 2015; 54: 4246
    • 4j Bagal DB. Kachkovskyi G. Knorn M. Rawner T. Bhanage BM. Reiser O. Angew. Chem. Int. Ed. 2015; 54: 6999
    • 4k Courant T. Masson G. J. Org. Chem 2016; 81: 6945
    • 4l Lefebvre Q. Hoffmann N. Rueping M. Chem. Commun. 2016; 52: 2493
    • 4m Magagnano G. Gualandi A. Marchini M. Mengozzi L. Ceroni P. Cozzi PG. Chem. Commun. 2017; 53: 1591
    • 4n Kublicki M. Dąbrowski M. Durka K. Kliś T. Serwatowski J. Woźniak K. Tetrahedron Lett. 2017; 58: 2162
    • 5a Iqbal N. Jung J. Park S. Cho E. J. Angew. Chem. Int. Ed. 2014; 53: 539
    • 5b Cao M.-Y. Ren X. Lu Z. Tetrahedron Lett. 2015; 56: 3732
    • 5c Yoshioka E. Kohtani S. Jichu T. Fukazawa T. Nagai T. Kawashima A. Takemoto Y. Miyabe H. J. Org. Chem. 2016; 81: 7217
    • 5d Wang K. Meng LG. Wang L. J. Org. Chem. 2016; 81: 7080
    • 5e Huan F. Chen QY. Guo Y. J. Org. Chem. 2016; 81: 7051
    • 6a Furst L. Matsuura BS. Narayanam JM. Tucker JW. Stephenson CR. Org. Lett. 2010; 12: 3104
    • 6b Chen M. Huang ZT. Zheng QY. Chem. Commun. 2012; 48: 11686
    • 6c Demissie TB. Ruud K. Hansen JH. Organometallics 2015; 34: 4218
    • 6d Jadhav SD. Bakshi D. Singh A. J. Org. Chem. 2015; 80: 10187
    • 7a Xiang J. Ipek M. Suri V. Tam M. Xing YZ. Huang N. Zhang YL. Tobin J. Mansour TS. McKew J. Bioorg. Med. Chem. 2007; 15: 4396
    • 7b Curti C. Laget M. Carle AO. Gellis A. Vanelle P. Eur. J. Med. Chem. 2007; 42: 880
    • 7c Yang H. Carter RG. Zakharov LN. J. Am. Chem. Soc. 2008; 130: 9238
    • 7d Tang X. Huang L. Xu Y. Yang J. Wu W. Jiang H. Angew. Chem. Int. Ed. 2014; 53: 4205
    • 7e Chen M. Huang ZT. Zheng QY. Org. Biomol. Chem. 2014; 12: 9337
    • 7f Liu X. Cong T. Liu P. Sun P. Org. Biomol. Chem. 2016; 14: 9416
    • 7g Fang YY. Luo ZG. Xu XM. RSC Adv. 2016; 6: 59661
    • 8a Muñoz-Molina JM. Belderraín TR. Pérez PJ. Inorg. Chem. 2010; 49: 642
    • 8b Oe Y. Uozumi Y. Adv. Synth. Catal. 2008; 350: 1771
    • 8c Nair RP. Kim TH. Frost BJ. Organo­metallics 2009; 28: 4681
    • 8d Phillips AD. Thommes K. Scopelliti R. Gandolfi C. Albrecht M. Severin K. Schreiber DF. Dyson PJ. Organometallics 2011; 30: 6119
  • 9 Jiang H. Chen X. Zhang Y. Yu S. Adv. Synth. Catal. 2013; 355: 809
  • 10 Meyer AU. Jäger S. Prasad Hari D. König B. Adv. Synth. Catal. 2015; 357: 2050
  • 11 1-[(2-Chloro-2-phenylethyl)sulfonyl]-4-nitrobenzene (3aa) – Typical Procedure A 10 mL reaction vessel with a magnetic stirring bar was equipped with 4-nitrobenzenesulfonyl chloride (100 mg, 0.5 mmol), styrene (52 mg, 0.5 mmol), Ru(bpy)3Cl2·6H2O (7.5 mg, 1 mol%), and MeCN (2 mL). The mixture was irradiated with a blue LED (5 W) and stirred at rt in an air atmosphere for 4 h. The distance of the reaction vial from the light source was about 2 cm. After the reaction, the solvent was removed under reduced pressure. Purification of the crude product was achieved by flash column chromatography using PE/EtOAc (6:1) as eluent; yield 132 mg (81%). 1H NMR (400 MHz, CDCl3): δ = 8.27–8.21 (m, 2 H), 7.92–7.86 (m, 2 H), 7.45 (m, 1 H), 7.35–7.27 (m, 2 H), 7.24 (d, J = 8.8 Hz, 1 H), 5.39 (t, J = 7.1 Hz, 1 H), 4.10–4.05 (m, 1 H), 4.00–3.94 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 150.7, 144.8, 137.8, 129.7,129.5, 129.1, 127.2, 124.1, 64.2, 54.9. ESI-MS: m/z = 326 [M+1]+. Anal. Calcd for C14H12ClNO4S: C, 51.62; H, 3.71; N, 4.30. Found: C, 51.75; H, 3.83; N, 4.17.
  • 12 (E)-4-{2-[(4-Nitrophenyl)sulfonyl]vinyl}benzonitrile (4a) – Typical Procedure A 10 mL reaction vessel with a magnetic stirring bar was equipped with 4-nitrobenzenesulfonyl chloride (110 mg, 0.5 mmol), 4-vinylbenzonitrile (65 mg, 0.5 mmol), Ru(bpy)3Cl2·6H2O (7. 5 mg, 1 mol%), and MeCN (2 mL). The mixture was irradiated with a blue LED (5 W) and stirred at rt in an air atmosphere for 4 h. The distance of the reaction vial from the light source was about 2 cm. After the reaction, the solvent was removed under reduced pressure. Purification of the crude product was achieved by flash column chromatography using PE/EtOAc (6:1) as eluent; yield 123 mg (78%). 1H NMR (400 MHz, DMSO): δ = 8.50–8.45 (m, 2 H), 8.24–8.19 (m, 2 H), 7.96 (m, 5 H), 7.87 (s, 1 H). 13C NMR (101 MHz, DMSO): δ = 151.0, 146.0, 142.5, 137.1, 133.3, 130.7, 130.3, 129.5, 125.4, 118.8, 113.8. ESI-MS: m/z = 315 [M+1]+. Anal. Calcd for C15H10N2O4S: C, 57.32; H, 3.21; N, 8.91. Found: C, 57.14; H, 3.36; N, 8.83.
  • 13 Jiang H. Cheng Y. Zhang Y. Yu S. Eur. J. Org. Chem. 2013; 5485