Synthesis 2018; 50(02): 323-329
DOI: 10.1055/s-0036-1590928
paper
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Enantioselective Vinylogous Henry Reaction of 3,5-Dimethyl-4-nitroisoxazole with Trifluoromethyl Ketones

Ehsan Jafari
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Dipti S. Kundu
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Pankaj Chauhan
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
V. P. Reddy Gajulapalli
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Carolina von Essen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland
,
Kari Rissanen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland
,
Dieter Enders*
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 05 September 2017

Accepted: 12 September 2017

Publication Date:
04 October 2017 (online)


Abstract

The enantioselective vinylogous Henry reaction of 3,5-dimethyl-4-nitroisoxazole with trifluoromethyl ketones employing a bifunctional squaramide organocatalyst has been developed. A series of isoxazole bearing trifluoromethyl-substituted tertiary alcohols, 2-substituted (R)-1,1,1-trifluoro-3-(3-methyl-4-nitroisoxazol-5-yl)propan-2-ols, were obtained under these mild reaction conditions in good yields and moderate to good enantioselectivities

Supporting Information

 
  • References

    • 1a Boldon S. Moore JE. Gouverneur V. Chem. Commun. 2008; 3622
    • 1b Kim DW. Jeong H.-J. Lim ST. Sohn M.-H. Angew. Chem. Int. Ed. 2008; 47: 8404
    • 1c Bondalapati S. Reddy UC. Kundu DS. Saikia AK. J. Fluorine Chem. 2010; 131: 320
    • 1d Furuya T. Kamlet AS. Ritter T. Nature (London) 2011; 473: 470
    • 1e Bizet V. Besset T. Ma JA. Cahard D. Curr. Top. Med. Chem. 2014; 14: 901
    • 1f Champagne PA. Desroches J. Hamel J.-D. Vandamme M. Paquin J.-F. Chem. Rev. 2015; 115: 9073
  • 2 Jeschke P. ChemBioChem 2004; 5: 570
    • 3a Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 3b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 4 Tirotta I. Dichiarante V. Pigliacelli C. Cavallo G. Terraneo G. Baldelli Bombelli F. Metrangolo P. Resnati G. Chem. Rev. 2015; 115: 1106
    • 5a Pagliaro M. Ciriminna R. J. Mater. Chem. 2005; 15: 4981
    • 5b Berger R. Resnati G. Metrangolo P. Weber E. Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
  • 6 Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
  • 7 Kelly CB. Mercadante MA. Leadbeater NE. Chem. Commun. 2013; 49: 11133
    • 8a Martina SL. X. Jagt RB. C. de Vries JG. Feringa BL. Minnaard AJ. Chem. Commun. 2006; 4093
    • 8b Motoki R. Tomita D. Kanai M. Shibasaki M. Tetrahedron Lett. 2006; 47: 8083
    • 8c Tur F. Saá JM. Org. Lett. 2007; 9: 5079
    • 8d Yearick K. Wolf C. Org. Lett. 2008; 10: 3915
    • 8e Blay G. Fernández I. Monleón A. Pedro JR. Vila C. Org. Lett. 2009; 11: 441
    • 8f Xu H. Wolf C. Chem. Commun. 2010; 46: 8026
    • 8g Zhang G.-W. Meng W. Ma H. Nie J. Zhang W.-Q. Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 3538
    • 8h Luo R. Li K. Hu Y. Tang W. Adv. Synth. Catal. 2013; 355: 1297
    • 9a Bandini M. Sinisi R. Umani-Ronchi A. Chem. Commun. 2008; 4360
    • 9b Enders D. Henseler A. Adv. Synth. Catal. 2009; 351: 1749
    • 9c Enders D. Henseler A. Lowins S. Synthesis 2009; 4125
    • 9d Wang X.-N. Shao P.-L. Lv H. Ye S. Org. Lett. 2009; 11: 4029
    • 9e Enders D. Grossmann A. Fronert J. Raabe G. Chem. Commun. 2010; 46: 6282
    • 9f Palacio C. Connon SJ. Org. Lett. 2011; 13: 1298
    • 9g Hara N. Tamura R. Funahashi Y. Nakamura S. Org. Lett. 2011; 13: 1662
    • 9h Chen X. Yang S. Song B.-A. Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134
    • 9i Lin J. Kang T. Liu Q. He L. Tetrahedron: Asymmetry 2014; 25: 949
    • 9j Jing Z. Bai X. Chen W. Zhang G. Zhu B. Jiang Z. Org. Lett. 2016; 18: 260
    • 10a Davis JP. Cain GA. Pitts WJ. Magolda RL. Copeland RA. Biochemistry 1996; 35: 1270
    • 10b Brough PA. Aherne W. Barril X. Borgognoni J. Boxall K. Cansfield JE. Cheung K.-MJ. Collins I. Davies NG. M. Drysdale MJ. Dymock B. Eccles SA. Finch H. Fink A. Hayes A. Howes R. Hubbard RE. James K. Jordan AM. Lockie A. Martins V. Massey A. Matthews TP. McDonald E. Northfield CJ. Pearl LH. Prodromou C. Ray S. Raynaud FI. Roughley SD. Sharp SY. Surgenor A. Walmsley DL. Webb P. Wood M. Workman P. Wright L. J. Med. Chem. 2008; 51: 196
    • 10c Andrzejak V. Muccioli GG. Body-Malapel M. El Bakali J. Djouina M. Renault N. Chavatte P. Desreumaux P. Lambert DM. Millet R. Bioorg. Med. Chem. 2011; 19: 3777
    • 10d Kaur K. Kumar V. Sharma AK. Gupta GK. Eur. J. Med. Chem. 2014; 77: 121
  • 11 Zhang Y. Wei B. Lin H. Cui W. Zeng X. Fan X. Adv. Synth. Catal. 2015; 357: 1299
  • 12 Zhang Y. Wei B.-W. Zou L.-N. Kang M.-L. Luo H.-Q. Fan X.-L. Tetrahedron 2016; 72: 2472
    • 13a Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 13b Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 14 CCDC 1571220 (3g) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967