Synthesis 2018; 50(02): 377-383
DOI: 10.1055/s-0036-1590933
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of 2-Arylbenzoxazinones from 2-Arylindoles with (Diacetoxyiodo)benzene as the Sole Oxidant

Xian-Xing Shang
School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. of China   Email: lixuqin@ustb.edu.cn
,
Huu-Manh Vu
School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. of China   Email: lixuqin@ustb.edu.cn
,
Xu-Qin Li*
School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. of China   Email: lixuqin@ustb.edu.cn
› Author Affiliations
This work was supported by grants from the National Standardization Project of Traditional Chinese Medicine (No. ZYBZH-Y-JX-27) and Fundamental Research Funds for the Central Universities (No. FRF-BR-14-002A).
Further Information

Publication History

Received: 12 July 2017

Accepted after revision: 15 September 2017

Publication Date:
19 October 2017 (online)


Abstract

A series of synthetically interesting 2-arylbenzoxazinones was prepared from 2-arylindoles by an efficient oxidative reaction mediated by (diacetoxyiodo)benzene [PhI(OAc)2] and assisted by water. PhI(OAc)2 was used as the sole oxidant and water was a crucial additive. Our preliminary mechanistic investigations suggest that a water-involved, iodine(III)-promoted sequential oxidation of 2-arylindoles, which was terminated by an interesting Grob-type fragmentation of a fused tricyclic precursor, might be the main components of this one-pot transformation.

Supporting Information

 
  • References

  • 1 Fenton G. Newton CG. Wyman BM. Bagge P. Dron DI. Riddell D. Jones GD. J. Med. Chem. 1989; 32: 265
  • 2 Hadfield JA. Pavlidis VH. McGown AT. Whitworth C. Perry PJ. Fox BW. Anti-Cancer Drugs 1994; 5: 533
  • 3 Hays SJ. Caprathe BW. Gilmore JL. Amin N. Emmerling MR. Michael W. Nadimpalli R. Nath R. Raser KJ. Stafford D. Watson D. Wang K. Jaen JC. J. Med. Chem. 1998; 41: 1060
  • 4 Kumar P. Shrivastava B. Pandeya SN. Stables JP. Eur. J. Med. Chem. 2011; 46: 1006
    • 5a Larksarp C. Alper H. Org. Lett. 1999; 1: 1619
    • 5b Wu X.-F. Schranck J. Neumann H. Beller M. Chem. Eur. J. 2011; 17: 12246
    • 5c Wu X.-F. Neumann H. Beller M. Chem. Eur. J. 2012; 18: 12599
  • 6 Giri R. Lam JK. Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 686
  • 7 Houlden CE. Hutchby M. Bailey CD. Ford JG. Tyler SN. Gagne MR. Lloyd-Jones GC. Booker-Milburn KI. Angew. Chem. Int. Ed. 2009; 48: 1830
  • 8 Liu Q. Chen P. Liu G. ACS Catal. 2013; 3: 178
  • 9 Ge Z.-Y. Xu Q.-M. Fei X.-D. Tang T. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2013; 78: 4524
  • 10 Yamashita M. Iida A. Tetrahedron 2014; 70: 5746
  • 11 Lian X.-L. Lei H. Quan X.-J. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Chem. Commun. 2013; 49: 8196
    • 12a Yamashita M. Iida A. Tetrahedron Lett. 2014; 55: 2991
    • 12b Feng YD. Li YD. Cheng GL. Wang LH. Cui XL. J. Org. Chem. 2015; 80: 7099
    • 12c Yamashita M. Nishizono Y. Himekawa S. Iida A. Tetrahedron 2016; 72: 4123
  • 13 Zhang CH. Li SL. Bures F. Lee R. Ye XY. Jiang ZY. ACS Catal. 2016; 6: 6853

    • For reviews, see:
    • 14a Singh FV. Wirth T. Synthesis 2013; 45: 2499
    • 14b Silva LF. Jr. Olofsson B. Nat. Prod. Rep. 2011; 10: 1722
    • 14c Dohi T. Kita Y. Chem. Commun. 2009; 2073
    • 14d Zhdankin VV. ARKIVOC 2009; (i): 1
    • 14e Moriarty RM. J. Org. Chem. 2005; 70: 2893
    • 14f Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 14g Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
    • 14h Wirth T. Hirt UH. Synthesis 1999; 1271
    • 14i Varvoglis A. Tetrahedron 1997; 53: 1179
    • 14j Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 14k Duan YN. Jiang S. Han YC. Sun B. Zhang C. Chin. J. Org. Chem. 2016; 36: 1973
    • 15a De Mico A. Margarita R. Parlanti L. Vescovi A. Piancatelli G. J. Org. Chem. 1997; 62: 6974
    • 15b Piancatelli G. Leonelli F. Org. Synth. 2006; 83: 18
    • 15c Swenton JS. Callinan A. Chen Y. Rohde JJ. Kerns ML. Morrow GW. J. Org. Chem. 1996; 61: 1267
    • 15d Wells G. Seaton A. Stevens MF. G. J. Med. Chem. 2000; 43: 1550
    • 15e Kita Y. Arisawa M. Gyoten M. Nakajima M. Hamada R. Tohma H. Takada T. J. Org. Chem. 1998; 63: 6625
    • 15f Hu Y. Li C. Kulkarni BA. Strobel G. Lobkovsky E. Torczynski RM. Porco JA. Org. Lett. 2001; 3: 1649
    • 16a Ochiai M. Takeuchi Y. Katayama T. Sueda T. Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 16b Rao W. Chan PW. H. Tetrahedron Lett. 2007; 48: 3789
    • 16c Lee S. MacMillan DW. C. Tetrahedron 2006; 62: 11413
    • 16d Shi M. Wang B.-Y. Li J. Eur. J. Org. Chem. 2005; 759
    • 16e Hu XQ. Feng GQ. Chen JR. Yan DM. Zhao QQ. Wei Q. Xiao WJ. Org. Biomol. Chem. 2015; 13: 3457
    • 17a Ohno M. Oguri I. Eguchi S. J. Org. Chem. 1999; 64: 8995
    • 17b Prakash O. Batra H. Kaur H. Sharma PK. Sharma V. Singh SP. Moriarty RM. Synthesis 2001; 4: 541
    • 17c Boye AC. Meyer D. Ingison CK. French AN. Wirth T. Org. Lett. 2003; 5: 2157
  • 18 Dohi T. Takenaga N. Goto A. Maruyama A. Kita Y. Org. Lett. 2007; 9: 3129
    • 19a Jean A. Cantat J. Bérard D. Bouchu D. Canesi S. Org. Lett. 2007; 9: 2553
    • 19b Fleming JJ. McReynolds MD. Du Bois J. J. Am. Chem. Soc. 2007; 129: 9964
    • 19c Liang J.-L. Yuan S.-X. Huang J.-S. Che C.-M. J. Org. Chem. 2004; 69: 3610
  • 20 Tian J. Gao W.-C. Zhou D.-M. Zhang C. Org. Lett. 2012; 14: 3020
  • 22 Capon B. Kwok FC. J. Am. Chem. Soc. 1989; 111: 5346

    • For reviews, see:
    • 23a Grob CA. Schiess PW. Angew. Chem., Int. Ed. Engl. 1967; 6: 1
    • 23b Grob CA. Angew. Chem., Int. Ed. Engl. 1969; 8: 535
    • 23c Prantz K. Mulzer J. Chem. Rev. 2010; 110: 3741
  • 24 Suma G. Bahekar RH. Rao AR. R. Org. Prep. Proced. Int. 2000; 32: 99
  • 25 Ammar YA. Mohamed YA. El-Sharief AM. S. El-Gaby MS. A. Abbas SY. Chem. Sci. J. 2011; CSJ-15