Synthesis 2018; 50(02): 211-226
DOI: 10.1055/s-0036-1590938
short review
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthetic Strategies of (R)-(–)-Baclofen: An Antispastic Drug

CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India   eMail: chemryams@gmail.com
,
Devatha Suman
CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India   eMail: chemryams@gmail.com
,
Koti Siva Nagi Reddy
CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India   eMail: chemryams@gmail.com
› Institutsangaben
D.S. and K.S.N.R. thank the Council of Scientific and Industrial Research­, New Delhi for financial assistance in the form of a fellowship. P. R. thanks the Council of Scientific and Industrial Research, Ministry of Science and Technology, New Delhi, for funding the project ORIGIN (CSC-0108).
Weitere Informationen

Publikationsverlauf

Received: 11. Juli 2017

Accepted after revision: 26. September 2017

Publikationsdatum:
20. Oktober 2017 (online)


Dedicated to Dr. Nitin W. Fadnavis, Natural Products Chemistry Division, IICT, Hyderabad on the occasion of his 63rd birthday

Abstract

Baclofen is an antispastic drug used as a muscle relaxant in the treatment of the paroxysmal pain of trigeminal neuralgia, spasticity of the spinal cord and cerebral origin. Baclofen resides biological activity exclusively in its (R)-(–)-enantiomer. In this review, various asymmetric synthetic strategies for (R)-(–)-baclofen are described.

1 Introduction

2 Resolution Synthetic Approaches

2.1 Chemical Resolution

2.2 Biocatalytic Resolution

3 Asymmetric Desymmetrization

3.1 Catalytic Enantioselective Desymmetrization

3.2 Enzymatic Desymmetrization

4 Chiral Auxiliary Induced Asymmetric Synthesis

4.1 Asymmetric Michael Addition

4.2 Asymmetric Aldol Addition

4.3 Asymmetric Nucleophilic Substitution

5 Asymmetric Reduction

5.1 Catalytic Asymmetric Hydrogenation

5.2 Bioreduction

6 Catalytic Asymmetric Conjugate Addition

7 Conclusion

 
  • References

    • 1a Froestl W. Adv. Pharmacol. 2010; 58: 19
    • 1b Yogeeswari P. Ragavendran JV. Sriram D. Recent Pat. CNS Drug Discovery 2006; 1: 113
    • 2a Bowery NG. Hill DR. Hudson AL. Doble A. Middemiss ND. Shaw J. Turnbull M. Nature (London) 1980; 283: 92
    • 2b Silverman RB. Levy MA. J. Biol. Chem. 1981; 256: 11565
    • 2c Mann A. Boulanger T. Brandau B. Durant F. Evrard G. Haeulme M. Desaulles E. Wermuth CG. J. Med. Chem. 1991; 34: 1307
    • 3a Pierau FK. Zimmerman P. Brain Res. 1973; 54: 376
    • 3b Polc P. Haefely W. Naunyn-Schmiedberg’s Arch. Pharmacol. 1976; 294: 121
  • 4 Goka VN. Schlewer G. Linget JM. Chambon JP. Wermuth CG. J. Med. Chem. 1991; 34: 2547
  • 5 Fromm GH. Terrence CF. Chaftha HS. Glass JD. Arch. Neural. 1980; 37: 768
  • 6 Hudgson P. Weightman D. Br. Med. J. 1971; 4: 15
  • 7 Olpe HR. Demiéville H. Baltzer V. Benzce WL. Koella WP. Wolf P. Haas HL. Eur. J. Pharmacol. 1978; 52: 133
  • 8 Chang C.-H. Yang DS. C. Yoo CS. Wang B.-C. Pletcher J. Sax M. Terrence CF. Acta Crystallogr., Sect. B 1982; 38: 2065
  • 9 Caira MR. Clauss R. Nassimbeni LR. Scott JL. Wildervanck AF. J. Chem. Soc., Perkin Trans. 2 1997; 763
  • 10 Camps P. Muñoz-Torrero D. Sánchez L. Tetrahedron: Asymmetry 2004; 15: 2039
  • 11 Montoya-Balbas IJ. Valentin-Guevara B. Lopez-Mendoza E. Linzaga-Elizalde I. Ordonez M. Roman-Bravo P. Molecules 2015; 20: 22028
    • 12a Brenna E. Fuganti C. Gatti FG. Serra S. Chem. Rev. 2011; 111: 4036
    • 12b Nestl BM. Nebel BA. Hauer B. Curr. Opin. Chem. Biol. 2011; 15: 187
    • 12c Ramesh P. Harini T. Fadnavis NW. Org. Process Res. Dev. 2015; 19: 296
    • 12d Ramesh P. Anjibabu R. Reddy YN. Yedukondalu M. Reddy TN. Kummari B. Raju A. Srinivasu N. Asian J. Org. Chem. 2017; 6: 984
    • 12e McCubbin JA. Maddess ML. Lautens M. Synlett 2008; 289
  • 13 Wang M.-X. Zhao S.-M. Tetrahedron Lett. 2002; 43: 6617
  • 14 Felluga F. Gombac V. Pitacco G. Valentin E. Tetrahedron: Asymmetry 2005; 16: 1341
  • 15 Veinberg G. Vorona M. Lebedevs A. Chernobrovijs A. Kalvinsh I. WO2007096314, 2007
    • 16a Rachwalsk M. Vermue N. Rutjes FP. J. T. Chem. Soc. Rev. 2013; 42: 9268
    • 16b Garcia-Urdiales E. Alfonso I. Gotor V. Chem. Rev. 2011; 111: 110
    • 17a Chen Y. Tian S.-K. Deng L. J. Am. Chem. Soc. 2000; 122: 9542
    • 17b Chen Y. Deng L. J. Am. Chem. Soc. 2001; 123: 11302
  • 18 Ji L. Ma Y. Li J. Zhang L. Zhang L. Tetrahedron Lett. 2009; 50: 6166
    • 19a Corey EJ. Noe MC. J. Am. Chem. Soc. 1996; 118: 319
    • 19b Harding M. Bodkin JA. Issa F. Hutton CA. Willis AC. McLeod MD. Tetrahedron 2009; 65: 831
    • 19c Corey EJ. Guzman-Perez A. Noe MC. Tetrahedron Lett. 1995; 36: 3481
  • 20 Yan L.-J. Wang H.-F. Chen W.-X. Tao Y. Jin K.-J. Chen F.-E. ChemCatChem 2016; 8: 2249
  • 21 Wang S.-X. Chen F.-E. Adv. Synth. Catal. 2009; 351: 547
  • 22 Chenevert R. Desjardins M. Can. J. Chem. 1994; 72: 2312
  • 23 Mazzini C. Lebreton J. Alphand V. Furstoss R. Tetrahedron Lett. 1997; 38: 1195
  • 24 Kaiwar V. Reese CB. Gray EJ. Neidle SZ. J. Chem. Soc., Perkin Trans. 1 1995; 2281
    • 25a Wang M.-X. Liu C.-S. Li J.-S. Meth-Cohn O. Tetrahedron Lett. 2000; 41: 8549
    • 25b Wang M.-X. Liu C.-S. Li J.-S. Tetrahedron: Asymmetry 2001; 12: 3367
  • 26 Duan Y. Yao P. Ren J. Han C. Li Q. Yuan J. Feng J. Wu Q. Zhu D. Sci. China: Chem. 2014; 57: 1164
    • 27a Licandro E. Maiorana S. Baldoli C. Capella L. Perdicchia D. Tetrahedron: Asymmetry 2000; 11: 975
    • 27b Licandro E. Maiorana S. Capella L. Manzotti R. Papagni A. Vandoni B. Albinati A. Chuang SH. Hwu J.-R. Organometallics 2001; 20: 485
  • 28 Kuo J.-H. Wong W.-C. US 20120029230, 2012
  • 29 Oba M. Saegusa T. Nishiyama N. Nishiyama K. Tetrahedron 2009; 65: 128
  • 30 Chang M.-Y. Sun P.-P. Chen S.-T. Chang N.-C. Tetrahedron Lett. 2003; 44: 5271
  • 31 Chang M.-Y. Chen C.-Y. Tasi M.-R. Tseng T.-W. Chang N.-C. Synthesis 2004; 840
  • 32 Khatik GL. Khurana R. Kumar V. Nair VA. Synthesis 2011; 3123
  • 33 Schoenfelder A. Mann A. Le Coz S. Synlett 1993; 63
  • 34 Evans DA. Ennis MD. Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
  • 35 Enders D. Niemeier O. Heterocycles 2005; 66: 385
  • 36 Job A. Janeck CF. Bettray W. Peters R. Enders D. Tetrahedron 2002; 58: 2253 ; and references therein
  • 37 Bauer W. Seebach D. Helv. Chim. Acta 1984; 67: 1972
  • 38 Thakur VV. Nikalje MD. Sudalai A. Tetrahedron: Asymmetry 2003; 14: 581
  • 39 Noyori R. Sandoval CA. Muniz K. Ohkuma T. Philos. Trans. R. Soc., A 2005; 363: 901
  • 40 Paraskar AS. Sudalai A. Tetrahedron 2006; 62: 4907
  • 41 Leutenegger MA. Pfaliz A. Angew. Chem., Int. Ed. Engl. 1989; 28: 60
  • 42 Deng J. Duan Z.-C. Huang J.-D. Hu X.-P. Wang D.-Y. Yu S.-B. Xu X.-F. Zheng Z. Org. Lett. 2007; 9: 4825
  • 43 Deng J. Hu X.-P. Huang J.-D. Yu S.-B. Wang D.-Y. Duan Z.-C. Zheng Z. J. Org. Chem. 2008; 73: 6022
  • 44 Mita T. Higuchi Y. Sato Y. Chem. Eur. J. 2015; 21: 16391
  • 45 Brenna E. Crotti M. Gatti FG. Monti D. Parmeggiani F. Powell RW. III. Santangelo S. Stewart JD. Adv. Synth. Catal. 2015; 357: 1849
  • 46 Dean WD. Blum DM. J. Org. Chem. 1993; 58: 7916
  • 47 Fryszkowska A. Fisher K. Gardiner JM. Stephens GM. Org. Biomol. Chem. 2010; 8: 533
  • 48 Zu L. Xie H. Li H. Wang J. Wang W. Adv. Synth. Catal. 2007; 349: 2660
    • 49a Wang Y. Li P. Liang X. Zhang TY. Ye J. Chem. Commun. 2008; 1232
    • 49b Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471
    • 49c Marigo M. Bertelsen S. Landa A. Jorgensen KA. J. Am. Chem. Soc. 2006; 128: 5475
  • 50 Jensen KL. Poulsen PH. Donslund BS. Morana F. Jørgensen KA. Org. Lett. 2012; 14: 1516
  • 51 Hayashi Y. Sakamoto D. Okamura D. Org. Lett. 2016; 18: 4
    • 52a Veverková E. Bilka S. Baran R. Šebesta R. Synthesis 2016; 48: 1474
    • 52b Kótai B. Kardos G. Hamza A. Farkas V. Pápai I. Soós T. Chem. Eur. J. 2014; 20: 5631
  • 53 Yasuoka J. Fukuyo S. Ikemoto T. US 2009/0137819, 2009
  • 54 Evans DA. Seidel D. J. Am. Chem. Soc. 2005; 127: 9958
  • 55 Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 56 Okino T. Hoashi Y. Furukawa T. Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
  • 57 Ojima I. Catalytic Asymmetric Synthesis . 3rd ed. Wiley-VCH; New York: 2010
  • 58 Leyva-Pérez A. García-García P. Corma A. Angew. Chem. Int. Ed. 2014; 53: 8687
  • 59 Li F. Li Y.-Z. Jia Z.-S. Xu M.-H. Tian P. Lin G.-Q. Tetrahedron 2011; 67: 10186
  • 60 Serdyuk OV. Heckel CM. Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
  • 61 Corey EJ. Zhang FY. Org. Lett. 2000; 2: 4257
  • 62 Ogawa T. Mouri S. Yazaki R. Kumagai N. Shibasaki M. Org. Lett. 2012; 14: 110
  • 63 Harrowven DC. Lucas MC. Howes PD. Tetrahedron 1999; 55: 1187
  • 64 Becht J.-M. Meyer O. Helmchen G. Synthesis 2003; 2805
    • 65a Ozawa F. Kubo A. Matsumoto Y. Hayashi T. Organometallics 1993; 12: 4188 ; and references therein
    • 65b Takaya Y. Ogasawara M. Hayashi T. J. Am. Chem. Soc. 1998; 120: 5579
  • 66 Shao C. Yu H.-J. Wu N.-Y. Tian P. Wang R. Feng C.-G. Lin G.-Q. Org. Lett. 2011; 13: 788
  • 67 Hayashi T. Ueyama K. Tokunaga N. Yoshida K. J. Am. Chem. Soc. 2003; 125: 11508