Synlett 2018; 29(04): 467-472
DOI: 10.1055/s-0036-1590954
letter
© Georg Thieme Verlag Stuttgart · New York

Acid-Mediated C–N Bond Cleavage in 1-Sulfonylpyrrolidines: An Efficient Route towards Dibenzoxanthenes, Diarylmethanes, and Resorcinarenes

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, Russian Federation   eMail: agazizov@iopc.ru
,
Andrey V. Smolobochkin
A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, Russian Federation   eMail: agazizov@iopc.ru
,
Ekaterina A. Anikina
A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, Russian Federation   eMail: agazizov@iopc.ru
,
Anna G. Strelnik
A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, Russian Federation   eMail: agazizov@iopc.ru
,
Alexander R. Burilov
A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, Russian Federation   eMail: agazizov@iopc.ru
,
Michail A. Pudovik
A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzova str., 8, Kazan, Russian Federation   eMail: agazizov@iopc.ru
› Institutsangaben
This work was supported by the Russian Science Foundation (Grant No. 16-13-10023).
Weitere Informationen

Publikationsverlauf

Received: 08. September 2017

Accepted after revision: 13. Oktober 2017

Publikationsdatum:
13. November 2017 (online)


Abstract

The rare example of pyrrolidine C–N bond cleavage in 1-sulfonylpyrrolidines in acidic media in the presence of phenols is reported. The reaction proceeds under mild conditions and provides a convenient route to otherwise hardly accessible and previously unknown dibenzoxanthenes, diarylbutanes, and resorcinarenes having a sulfonylamide moiety.

Supporting Information

 
  • References and Notes

  • 1 Supuran CT. Innocenti A. Mastrolorenzo A. Scozzafava A. Mini-Rev. Med. Chem. 2004; 4: 189
  • 2 Ajeet A. Mishra AK. Kumar A. Am. J. Pharmacol. Sci. 2015; 3: 18
  • 3 Carta F. Scozzafava A. Supuran CT. Expert Opin. Ther. Pat. 2012; 22: 747
  • 4 Masuko T. Suzuki T. Miyake M. Kusama-Eguchi K. Kizawa Y. Tomono K. Kashiwagi K. Igarashi K. Kusama T. Neurosci. Lett. 2012; 506: 251
  • 5 Zajdel P. Marciniec K. Maslankiewicz A. Grychowska K. Satala G. Duszynska B. Lenda T. Siwek A. Nowak G. Partyka A. Wrobel D. Jastrzebska-Wiesek M. Bojarski AJ. Wesolowska A. Pawlowski M. Eur. J. Med. Chem. 2013; 60: 42
  • 6 Kolaczkowski M. Marcinkowska M. Bucki A. Pawlowski M. Mitka K. Jaskowska J. Kowalski P. Kazek G. Siwek A. Wasik A. Wesolowska A. Mierzejewski P. Bienkowski P. J. Med. Chem. 2014; 57: 4543
  • 7 Chang M.-Y. Kung Y.-H. Chen S.-T. Tetrahedron 2006; 62: 10843
  • 8 Chang M.-Y. Kung Y.-H. Chen S.-T. Tetrahedron Lett. 2006; 47: 4865
  • 9 Münster I. Rolle U. Madder A. De Clercq PJ. Tetrahedron: Asymmetry 1995; 6: 2673
  • 10 Katagiri N. Muto M. Nomura M. Higashikawa T. Kaneko C. Chem. Pharm. Bull. 1991; 39: 1112
  • 11 Padwa A. Nara S. Wang Q. J. Org. Chem. 2005; 70: 8538
  • 12 Bon E. Biggs DC. H. Bertrand G. Bigg DC. H. J. Org. Chem. 1994; 59: 1904
  • 13 Selvakumar S. Baktharaman S. Singh VK. J. Org. Chem. 2007; 72: 10141
  • 14 Jiang H. He J. Liu T. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 2055
  • 15 Srikanth K. Kumar CA. Ghosh B. Jha T. Bioorg. Med. Chem. 2002; 10: 2119
  • 16 Chang M. J. Chin. Chem. Soc. 2008; 55: 421
  • 17 Cossy J. Tresnard L. Pardo DG. Synlett 2000; 409
  • 18 Bu X. Jing H. Wang L. Chang T. Jin L. Liang Y. J. Mol. Catal. A: Chem. 2006; 259: 121
  • 19 Talavera G. Reyes E. Vicario JL. Carrillo L. Uria U. Adv. Synth. Catal. 2013; 355: 653
  • 20 Chang M.-Y. Lin C.-Y. Hung C.-Y. Tetrahedron 2007; 63: 3312
  • 21 Kokotos CG. Aggarwal VK. Org. Lett. 2007; 9: 2099
  • 22 Osberger TJ. Rogness DC. Kohrt JT. Stepan AF. White MC. Nature 2016; 537: 214
  • 23 Jin JY. Wu X. Tian GR. Synth. Commun. 2005; 35: 2535
  • 24 Samanta S. Srikanth K. Banerjee S. Debnath B. Gayen S. Jha T. Bioorg. Med. Chem. 2004; 12: 1413
  • 25 Somfai P. He HM. Tanner D. Tetrahedron Lett. 1991; 32: 283
  • 26 Dixit AN. Tandel SK. Rajappa S. Tetrahedron Lett. 1994; 35: 6133
  • 27 King FD. Caddick S. Org. Biomol. Chem. 2011; 9: 4361
  • 28 Gazizov AS. Smolobochkin AV. Anikina EA. Voronina JK. Burilov AR. Pudovik MA. Synth. Commun. 2017; 47: 44
  • 29 Gazizov АS. Smolobochkin АV. Voronina JK. Burilov АR. Pudovik М. А. Tetrahedron 2015; 71: 445
  • 30 General Method for the Synthesis of Dibenzoxanthenes 3 To a solution of pyrrolidine 2 (1.27 mmol) or acetal 1 (1.25 mmol) and 2-naphthol (0.37 g, 2.54 mmol) in dry CHCl3 (5 mL) TFA (2 mL) was added. The reaction mixture was stirred at r.t. for 24 h. Then the solvent was removed, the residue washed with Et2O (5 mL), and dried under vacuum (1 h, 0.01 Torr, r.t.) to give the desired product 3. General Method for the Synthesis of Diarylbutanes 4 To a solution of pyrrolidine 2 (1.27 mmol) or acetal 1 (1.27 mmol) and 4-chlororesorcinol (0.37 g, 2.54 mmol) in dry CHCl3 (5 mL) TFA (2 mL) was added. The reaction mixture was stirred at r.t. for 24 h. Then the solvent was removed, the residue washed with Et2O (5 mL), and dried under vacuum (1 h, 0.01 Torr, r.t.) to give the desired product 4. General Method for the Synthesis of Calixarenes 5, 6 To a solution of pyrrolidine 2 (1.27 mmol) or acetal 1 (1.27 mmol) and the appropriate phenol (1.27 mmol) in dry CHCl3 (5 mL) TFA (2 mL) was added. The reaction mixture was stirred at r.t. for 24 h. Then the solvent was removed, the residue washed with Et2O (5 mL), and dried under vacuum (1 h, 0.01 Torr, r.t.) to give the desired product 5 or 6. N-[3-(14H-Dibenzo[a,j]xanthen-14-yl)propyl]methanesulfonamide (3c) White solid (0.30 g, 56% from pyrrolidine 2c), mp 145–146 °C. 1H NMR (400 MHz, (CD3)2SO): δ = 1.03–1.13 (m, 2 H, CH2), 1.90–2.00 (m, 2 H, CH2), 2.57 (s, 3 H, СН3), 2.56–2.64 (m, 2 H, CH2), 5.69–5.77 (m, 1 H, CH), 6.64 (t, 3 J HH = 5.9 Hz, 1 H, NH), 7.45 (d, 3 J HH = 8.8 Hz, 2 H, CHAr), 7.51 (t, 3 J HH = 7.4 Hz, 2 H, CHAr), 7.68 (t, 3 J HH = 7.6 Hz, 2 H, CHAr), 7.91 (d, 3 J HH = 8.8 Hz, 2 H, CHAr), 7.97 (d, 3 J HH = 8.0 Hz, 2 H, CHAr), 8.55 (d, 3 J HH = 8.5 Hz, 2 H, CHAr). 13C NMR (150 MHz, (CD3)2SO,): δ = 25.7, 30.3, 33.6, 39.5, 42.9, 116.9, 117.7, 123.6, 124.9, 127.4, 129.0, 129.2, 131.2, 131.6, 149.9. IR (KBr): ν = 1145, 1325, 1591, 2862, 2939, 3060, 3312 cm–1. MALDI TOF: m/z = 440 [M + Na], 456 [M + K]. Anal. Calcd (%) for C25H23NO3S: C, 71.92; H, 5.55; N, 3.09; S, 7.81. Found: C, 72.15; H, 5.69; N, 3.09; S, 7.81. N-[4,4-Bis(5-chloro-2,4-dihydroxyphenyl)butyl]-4-methylbenzenesulfonamide (4a) White solid (0.42 g, 65% from pyrrolidine 2a, 0.48 g, 74% from acetal 1a), mp 145–147 °C. 1H NMR (400 MHz, (CD3)2SO): δ = 1.13–1.29 (m, 2 H, CH2), 1.67–1.77 (m, 2 H, CH2), 2.37 (s, 3 H, СН3), 2.67–2.75 (m, 2 H, CH2), 4.16 (t, 3 J HH = 7.8 Hz, 1 H, CH), 6.43 (s, 2 H, CHAr), 6.84 (s, 2 H, CHAr), 7.34 (d, 3 J HH = 8.0 Hz, 2 H, CHAr), 7.38 (t, 3 J HH = 5.9 Hz, 1 H, NH), 7.61 (d, 3 J HH = 8.2 Hz, 2 H, CHAr), 9.25 (s, 2 H, OH), 9.65 (s, 2 H, OH). 13C NMR (150 MHz, (CD3)2SO): δ = 21.4, 28.2, 31.2, 35.8, 43.2, 104.1, 109.4, 123.5, 126.9, 128.8, 130.0, 138.3, 142.8, 151.6, 154.7; IR (KBr): ν = 1152, 1598, 2867, 2943, 3286, 3428 cm–1. MALDI TOF: m/z = 534 [M + Na], 550 [M + K]. Anal. Calcd (%) for C23H23Cl2NO6S: C, 53.91; H, 4.52; Cl, 13.84, N, 2.73; S, 6.26. Found: C, 52.17; H, 4.41; Cl, 14.00, N, 2.49; S, 6.07. N,N′,N′′,N′′′-{[14,16,34,36,54,56,74,76-Octahydroxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-2,4,6,8-tetrayl]tetrakis(propane-3,1-diyl)}tetrakis(4-methylbenzenesulfonamide) (5a) White solid (0.38 g, 89% from pyrrolidine 2a, 0.39 g, 94% from acetal 1a), mp 169–170 °C. 1H NMR (400 MHz, (CD3)2SO): δ = 1.18–1.29 (m, 8 H, CH2), 1.91–1.99 (m, 8 H, CH2), 2.36 (s, 12 H, CH3), 2.67–2.74 (m, 8 H, CH2), 4.10 (t, 3 J HH = 7.8 Hz, 4 H, CH), 6.12 (s, 4 H, CHAr), 7.04 (s, 4 H, CHAr), 7.32 (d, 3 J HH = 8.1 Hz, 8 H, CHAr), 7.36 (t, 3 J HH = 5.6 Hz, 4 H, NH), 7.61 (d, 3 J HH = 8.1 Hz, 8 H, CHAr), 8.86 (s, 8 H, OH). 13C NMR (150 MHz, (CD3)2SO): δ = 21.4, 28.2, 31.0, 32.9, 43.0, 102.8, 123.3, 125.3, 126.9, 130.0, 138.3, 142.9, 152.2; IR (KBr): ν = 1154, 1599, 2871, 2939, 3302 cm–1. MALDI TOF: m/z = 1355 [M + Na], 1371 [M + K]. Anal. Calcd (%) for C68H76N4O16S4: C, 61.24; H, 5.74; N, 4.20; S, 9.62. Found: C, 61.01; H, 5.59; N, 3.92; S, 9.90.
  • 31 Menger FM. Mandell L. J. Am. Chem. Soc. 1967; 89: 4424
  • 32 Adesogan EK. Alo BI. J. Chem. Soc., Chem. Commun. 1979; 6: 673
  • 33 Mishra AK. Biswas S. J. Org. Chem. 2016; 81: 2355
  • 34 Smolobochkin AV. Gazizov AS. Burilov AR. Pudovik MA. Russ. Chem. Bull. 2016; 65: 1377
  • 35 Atta-ur-Rahman. One and Two Dimensional NMR Spectroscopy . Elsevier; Amsterdam: 1989
  • 36 Derome AE. Modern NMR Techniques for Chemistry Research . Pergamon Press; Cambridge: 1988
  • 37 Stott K. Stonehouse J. Keeler J. Hwang T.-L. Shaka AJ. J. Am. Chem. Soc. 1995; 117: 4199
  • 38 Hayashi Y. Chem. Sci. 2016; 7: 866
  • 39 Smolobochkin AV. Gazizov AS. Anikina EA. Burilov AR. Pudovik MA. Chem. Heterocycl. Compd. 2017; 53: 161