Synlett 2017; 28(17): 2307-2310
DOI: 10.1055/s-0036-1590965
letter
© Georg Thieme Verlag Stuttgart · New York

Convenient and Clean Synthesis of Isatins by Metal-Free Oxidation of Oxindoles

Wen-Ting Wei*, Wei-Wei Ying, Wen-Ming Zhu, Yi Wu, Yi-Ling Huang, Yi-Qi Cao, Yi-Ning Wang, Hongze Liang*
This research is sponsored by research funds of NBU (No. ZX2016000706), the foundation of Ningbo University (No. XYL17009), and the K. C. Wong Magna Fund in Ningbo University
Further Information

Publication History

Received: 19 May 2017

Accepted after revision: 23 June 2017

Publication Date:
21 July 2017 (eFirst)

Abstract

A metal-free synthesis of isatins was achieved through the oxidative reactions of oxindoles with molecular oxygen in the presence of tert-butyl nitrite as an additive. This strategy provides a convenient and simple synthetic route to the construction of C=O bonds without the need for any catalyst or base. The attractive features of this reaction include its convenient procedure and mild reaction conditions.

Supporting Information

 
  • References

    • 1a Popp PD. Adv. Heterocycl. Chem. 1975; 18: 1
    • 1b da Silva JF. M. Garden SJ. Pinto AC. J. Braz. Chem. Soc. 2001; 12: 273
    • 2a Yoshikawa M. Murakami T. Kishi A. Sakurama T. Matsuda H. Nomura M. Matsuda H. Kubo M. Chem. Pharm. Bull. 1998; 46: 886
    • 2b Gil-Turners MS. Hay ME. Fenical W. Science 1989; 246: 116
    • 2c Itoh J. Han SB. Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 6313
    • 2d Franz AK. Dreyfuss PD. Schreiber SL. J. Am. Chem. Soc. 2007; 129: 1020
    • 3a Pinto AC. Moreira Lapis AA. Vasconcellos da Silva B. Bastos RS. Dupont J. Neto BA. D. Tetrahedron Lett. 2008; 49: 5639
    • 3b Rewcastle GW. Sutherland HS. Weir CA. Blackburn AG. Denny WA. Tetrahedron Lett. 2005; 46: 8719
    • 3c Zhao P.-B. Zhao B.-B. Li Y. Gao W.-T. Youji Huaxue 2014; 34: 126
    • 4a Stollé R. J. Prakt. Chem. 1922; 105: 137
    • 4b Bryant III WM. Huhn GF. Jensen JH. Pierce ME. Stammbach C. Synth. Commun. 1993; 23: 1617
    • 5a Martinet J. C. R. Hebd. Seances Acad. Sci. 1918; 166: 851
    • 5b Hewawasam P. Meanwell NA. Tetrahedron Lett. 1994; 35: 7303
    • 6a Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 6b Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 6c Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 6d Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
  • 7 Yu J.-W. Mao S. Wang Y.-Q. Tetrahedron Lett. 2015; 56: 1575
  • 8 Prathima PS. Bikshapathi R. Rao VJ. Tetrahedron Lett. 2015; 56: 6385
    • 9a Ma J. Hu Z. Li M. Zhao W. Hu X. Mo W. Hu B. Sun N. Shen Z. Tetrahedron 2015; 71: 6733
    • 9b Itoh I. Matsusaki Y. Fujiya A. Tada N. Miura T. Itoh A. Tetrahedron Lett. 2014; 55: 3160
    • 9c Naidu S. Reddy SR. J. Mol. Liq. 2016; 222: 441
    • 9d Zi Y. Cai Z.-J. Wang S.-Y. Ji S.-J. Org. Lett. 2014; 16: 3094
    • 9e Wei W.-T. Song R.-J. Ouyang X.-H. Li Y. Li H.-B. Li J.-H. Org. Chem. Front. 2014; 1: 484
    • 9f Yang X.-H. Ouyang X.-H. Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2015; 357: 1161
    • 9g Yang X.-H. Song R.-J. Li J.-H. Adv. Synth. Catal. 2015; 357: 3849
    • 9h Hu M. Liu B. Ouyang X.-H. Song R.-J. Li J.-H. Adv. Synth. Catal. 2015; 357: 3332
  • 10 Wei W.-T. Zhu W.-M. Wu Y. Huang Y.-L. Liang HZ. Youji Huaxue 2017; DOI: DOI: 10.6023/cjoc201703039.
  • 11 Isatins 2a–n; General Procedure A Schlenk tube was charged with the appropriate oxindole 1 (0.3 mmol), t-BuONO (0.6 mmol), and THF (2 mL), and the mixture was stirred at 50 °C under O2 (1 atm) until the starting material was completely consumed (TLC). The mixture was then washed with brine, and the aqueous phase was extracted with EtOAc (3 × 10 mL). The organic extracts were combined, dried (Na2SO4), and concentrated under a vacuum to give a crude product that was purified by column chromatography [silica gel, hexane–EtOAc (10:1)]. The products were characterized by means of 1H and 13C NMR spectroscopy and mass spectrometry (see Supporting Information). Isatin (1H-Indole-2,3-dione; 2a) Yellow solid; yield: 0.0379 g (86%); mp 122.8–123.4 °C; 1H NMR (400 MHz, DMSO-d 6): δ = 11.07 (s, 1 H), 7.59 (t, J = 8.0 Hz, 1 H), 7.50 (d, J = 7.6 Hz, 1 H), 7.07 (t, J = 7.6 Hz, 1 H), 6.92 (d, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 184.8, 159.8, 151.2, 138.8, 125.1, 123.2, 118.2, 112.7. LRMS (EI, 70 eV): m/z (%) = 147 (M+, 61), 119 (100), 92 (74).
  • 12 Peng X.-X. Deng Y.-J. Yang X.-L. Zhang L. Yu W. Han B. Org. Lett. 2014; 16: 4650
    • 13a Deng G.-B. Zhang J.-L. Liu Y.-Y. Liu B. Yang X.-H. Li J.-H. Chem. Commun. (Cambridge) 2015; 51: 1886
    • 13b Maity S. Naveen T. Sharma U. Maiti D. Org. Lett. 2013; 15: 3384
  • 14 Kirchner F. Mayer-Figge A. Zabel F. Becker KH. Int. J. Chem. Kinet. 1999; 31: 127