Synlett 2018; 29(07): 898-903
DOI: 10.1055/s-0036-1591529
letter
© Georg Thieme Verlag Stuttgart · New York

Alcohol-Initiated Dinitrile Cyclization in Basic Media: A Route Toward Pyrazino[1,2-a]indole-3-Amines

Alexey A. Festa
a   Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russian Federation   Email: lvoskressensky@sci.pfu.edu.ru
,
Nikita E. Golantsov
a   Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russian Federation   Email: lvoskressensky@sci.pfu.edu.ru
,
Olga A. Storozhenko
a   Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russian Federation   Email: lvoskressensky@sci.pfu.edu.ru
,
Alexey N. Shumsky
b   N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (IBCP), Kosygin St., 4, 119334 Moscow, Russian Federation
,
Alexey V. Varlamov
a   Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russian Federation   Email: lvoskressensky@sci.pfu.edu.ru
,
a   Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russian Federation   Email: lvoskressensky@sci.pfu.edu.ru
› Author Affiliations
This publication was prepared with the support of the RUDN University Program 5-100, RFBR Grants 15-33-70034 mol_a_mos and 17-53-560020, and Grant MK-5319.2016.3 of the RF President for Young Scientists.
Further Information

Publication History

Received: 26 October 2017

Accepted after revision: 18 December 2017

Publication Date:
12 February 2018 (online)


Abstract

A selective route to the formation of 1-alkoxypyrazino[1,2-a]indole-3-amines through alcohol-initiated dinitrile cyclization, starting from N-(cyanomethyl)indole-2-carbonitriles under basic conditions, was discovered. The resulting compounds were shown to be unstable in solution, and a three-component reaction of the dinitrile, alcohol, and aromatic aldehyde was used to overcome the problem.

Supporting Information

 
  • References and Notes

  • 1 Bit RA. Davis PD. Elliott LH. Harris W. Hill CH. Keech E. Kumar H. Lowton G. Maw A. Nixon JS. Vesey DR. Wadsworth J. Wilkinson SE. J. Med. Chem. 1993; 36: 21
  • 2 Vigushin DM. Brooke G. Willows D. Coombes RC. Moody CJ. Bioorg. Med. Chem. Lett. 2003; 13: 3661
  • 3 Plewe M. Whitby L. McCormack K. Henkel G. Brown E. Boger D. Sokolova N. Reddy V. WO 2016160677, 2016 ; Chem. Abstr. 2016, 165, 475533
  • 4 Kounde CS. Yeo H.-Q. Wang Q.-Y. Wan KF. Dong H. Karuna R. Dix I. Wagner T. Zou B. Simon O. Bonamy GM. C. Yeung BK. S. Yokokawa F. Bioorg. Med. Chem. Lett. 2017; 27: 1385
  • 5 Chappie TA. Chandrasekaran RY. Helal CJ. LaChapelle EA. Patel NC. Sciabola S. Verhoest PR. Wager TT. WO 2016203347, 2016 ; Chem. Abstr. 2016, 166, 95443
  • 6 Romagnoli R. Baraldi PG. Carrion MD. Lopez Cara C. Kimatrai Salvador M. Preti D. Tabrizi MA. Moorman AR. Vincenzi F. Borea PA. Varani K. Eur. J. Med. Chem. 2013; 67: 409
  • 7 Freed ME. US 4022778, 1977 ; Chem. Abstr. 1977, 87, 68421
    • 8a Basanagoudar LD. Mahajanshetti CS. Hendi SB. Dambal SB. Indian J. Chem. B: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1991; 30: 1014
    • 8b Rajur SB. Merwade AY. Hendi SB. Basanagoudar LD. Indian J. Chem. B: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989; 28: 1065
  • 9 Mokrosz JL. Duszyńska B. Paluchowska MH. Arch. Pharm. (Weinheim, Ger.) 1994; 8: 529
  • 10 Commons TJ. Laclair CM. Christman S. WO 9612721, 1996 ; Chem. Abstr. 1996, 125, 114494
  • 11 McCort G. Hoornaert C. Duclos O. Guilpain E. Cadilhac C. Dellac G. FR 2761073, 1998 ; Chem. Abstr. 1998, 130, 38400
  • 12 Romagnoli R. Baraldi PG. Carrion MD. Cruz-Lopez O. Cara CL. Delia P. Mojgan AT. Jan B. Ernest H. Enrica F. Roberto G. Lett. Drug. Des. Discovery 2009; 6: 298
    • 13a Tiwari RK. Singh D. Singh J. Pathak AK. Dabur R. Chhillar AK. Singh R. Sharma GL. Chandra R. Verma AK. Bioorg. Med. Chem. Lett. 2006; 16: 413
    • 13b Mahdavi M. Hassanzadeh-Soureshjan R. Saeedi M. Ariafard A. BabaAhmadi R. Rashidi Ranjbar P. Shafiee A. RSC Adv. 2015; 5: 101353
  • 14 McCort G. Hoornaert C. Cadilhac C. Duclos O. Guilpain E. Dellac G. WO 1998042710, 1998 ; Chem. Abstr.; 1998, 129: 275933
  • 15 Markl C. Attia MI. Julius J. Sethi S. Witt-Enderby PA. Zlotos DP. Bioorg. Med. Chem. 2009; 17: 4583
  • 16 Tiwari RK. Verma AK. Chhillar AK. Singh D. Singh J. Sankar KV. Yadav V. Sharma GL. Chandra R. Bioorg. Med. Chem. 2006; 14: 2747
  • 17 Richter HG. Freichel C. Huwyler J. Nakagawa T. Nettekoven M. Plancher JM. Raab S. Roche O. Schuler F. Taylor S. Ullmer C. Wiegand R. Bioorg. Med. Chem. Lett. 2010; 20: 5713
    • 18a Fong C.-J. Addo J. Dukat M. Smith C. Mitchell NA. Herrick-Davis K. Teitler M. Glennon RA. Bioorg. Med. Chem. Lett. 2002; 12: 155
    • 18b Bös M. Jenck F. Martin JR. Moreau JL. Mutel V. Sleight AJ. Widmer U. Eur. J. Med. Chem. 1997; 32: 253
    • 18c Shiokawa Z. Hashimoto K. Saito B. Oguro Y. Sumi H. Yabuki M. Yoshimatsu M. Kosugi Y. Debori Y. Morishita N. Dougan DR. Snell GP. Yoshida S. Ishikawa T. Bioorg. Med. Chem. 2013; 21: 7938
  • 19 Rover S. Adams DR. Bénardeau A. Bentley JM. Bickerdike MJ. Bourson A. Cliffe IA. Coassolo P. Davidson JE. P. Dourish CT. Hebeisen P. Kennett GA. Knight AR. Malcolm CS. Mattei P. Misra A. Mizrahi J. Muller M. Porter RH. P. Richter H. Taylor S. Vickers SP. Bioorg. Med. Chem. Lett. 2005; 15: 3604
  • 20 Goldberg DR. Choi Y. Cogan D. Corson M. DeLeon R. Gao A. Gruenbaum L. Hao MH. Joseph D. Kashem MA. Miller C. Moss N. Netherton MR. Pargellis CP. Pelletier J. Sellati R. Skow D. Torcellini C. Tseng Y.-C. Wang J. Wasti R. Werneburg B. Wua JP. Xiong Z. Bioorg. Med. Chem. Lett. 2008; 18: 938
  • 21 Kim YJ. Pyo JS. Jung Y.-S. Kwak J.-H. Bioorg. Med. Chem. Lett. 2017; 27: 607
    • 22a Liang W.-L. Le X. Li H.-J. Yang X.-L. Chen J.-X. Xu J. Liu H.-L. Wang L.-Y. Wang K.-T. Hu K.-C. Yang D.-P. Lan W.-J. Mar. Drugs 2014; 12: 5657
    • 22b Chen J. Wang C. Lan W. Huang C. Lin M. Wang Z. Liang W. Iwamoto A. Yang X. Liu H. Mar. Drugs 2015; 13: 6259
    • 23a Hodgetts KJ. Ge P. Yoon T. De Lombaert S. Brodbeck R. Guilanello M. Kieltyka A. Horvath RF. Kehne JF. Krause JE. Maynard GD. Hofmann D. Lee Y. Fung L. Doller D. J. Med. Chem. 2011; 54: 4187
    • 23b Lainchbury M. Matthews TP. McHardy T. Boxall KJ. Walton MI. Eve PD. Hayes A. Valenti MR. de Haven Brandon AK. Box G. Aherne GW. Reader JC. Raynaud FI. Eccles SA. Garrett MD. Collins I. J. Med. Chem. 2012; 55: 10229
    • 23c Bates BS. Rodriguez AL. Felts AS. Morrison RD. Venable DF. Blobaum AL. Byers FW. Lawson KP. Daniels JS. Niswender CM. Jones CK. Conn PJ. Lindsley CW. Emmitte KA. Bioorg. Med. Chem. Lett. 2014; 24: 3307
    • 23d Beaulieu PL. Bolger G. Duplessis M. Gagnon A. Garneau M. Stammers T. Kukolj G. Duan J. Bioorg. Med. Chem. Lett. 2015; 25: 1135
    • 24a Abbiati G. Beccalli EM. Broggini G. Zoni C. J. Org. Chem. 2003; 68: 7625
    • 24b Abbiati G. Arcadi A. Bellinazzi A. Beccalli E. Rossi E. Zanzola S. J. Org. Chem. 2005; 70: 4088
    • 24c Abbiati G. Beccalli E. Broggini G. Martinelli M. Paladino G. Synlett 2006; 73
    • 24d Krogsgaard-Larsen N. Begtrup M. Herth MM. Kehler J. Synthesis 2010; 4287
    • 24e Nayak M. Pandey G. Batra S. Tetrahedron 2011; 67: 7563
    • 24f Broggini G. Barbera V. Beccalli EM. Borsini E. Galli S. Lanza G. Zecchi G. Adv. Synth. Catal. 2012; 354: 159
    • 24g Toche R. Chavan S. Janrao R. Monatsh. Chem. 2014; 145: 1507
  • 25 Sokolova EA. Festa AA. Chem. Heterocycl. Compd. (N. Y., NY U. S.) 2016; 52: 219
  • 26 Cheng YA. Yu WZ. Yeung Y.-Y. Angew. Chem. Int. Ed. 2015; 54: 12102
    • 27a Ye K.-Y. Cheng Q. Zhuo C.-X. Dai L.-X. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 8113
    • 27b Ye K.-Y. Wu K.-J. Li G.-T. Dai L.-X. You S.-L. Heterocycles 2017; 95: 304
  • 28 Boothe JR. Shen Y. Wolfe JP. J. Org. Chem. 2017; 82: 2777−2786
  • 29 Johnson F. Panella JP. Carlson AA. Hunneman DH. J. Org. Chem. 1962; 27: 2473
  • 30 Johnson F. Nasutavicus WA. J. Org. Chem. 1962; 27: 3953
  • 31 Taurins A. Li RT. Can. J. Chem. 1974; 52: 843
    • 32a Baron H. Remfry FG. P. Thorpe YF. J. Chem. Soc., Trans. 1904; 85: 1726
    • 32b Ziegler K. Eberle H. Ohlinger H. Liebigs Ann. Chem. 1933; 504: 94
    • 32c Schaefer JP. Bloomfield JJ. Org. React. (Hoboken, NJ U. S.) 1967; 15: 1
  • 33 Wang A. Zhang H. Biehl ER. Heterocycles 2000; 53: 291
  • 34 Wrobel AJ. Lucchesi R. Wibbeling B. Daniliuc C.-D. Fröhlich R. Würthwein E.-U. J. Org. Chem. 2016; 81: 2849
  • 35 Wöhrle D. Schnurpfeil G. Knothe G. Dyes Pigm. 1992; 18: 91
  • 36 Schaefer FC. Peters GA. J. Org. Chem. 1961; 26: 412
  • 37 Grigg R. Mitchell TR. B. Sutthivaiyakit S. Tongpenyai N. Tetra­hedron Lett. 1981; 22: 4107
  • 38 1-Methoxypyrazino[1,2-a]indole-3-amine (3a); Typical ­Procedure Na2CO3 (2.0 mmol) was added to a stirred solution of dinitrile 2a (1.0 mmol) in MeOH (2.5 mL) at reflux, and the mixture was vigorously stirred at reflux for 1 h. The mixture was then cooled to r.t. and the resulting precipitate was collected by filtration, washed with H2O (3 × 10 mL), and dried in air to give a yellow solid; yield: 0.170 g (80%); mp 134 °С (dec.). IR (KBr): 3377; 3272 cm–1. 1H NMR (600 MHz, DМSО-d 6): δ = 4.04 (s, 3 H, OMe), 4.93 (s, 2 H, NH2), 6.84 (s, 1 H, H-10), 7.23–7.25 (m, 2 H, H-7, H-8), 7.47 (s, 1 H, H-4), 7.76–7.78 (m, 1 H, H-6), 7.90–7.91 (m, 1 H, H-9). 13C NMR (150 MHz, DМSО-d 6): δ = 53.8 (OCH3), 90.8 (C-4), 92.1 (C-10), 111.9 (C-9), 120.7 (C-10a), 121.4 (C-8), 122.3 (C-7), 122.4 (C-6), 127.4 (C-9a), 129.7 (C-5a), 140.8 (C-3), 155.7 (C-1). ESI-MS: m/z = 214 [M + H]+. Anal. Calcd for C12H11N3O (213.09): C 67.59; H 5.20; N 19.71. Found: C 67.45; H 5.23; N 19.62.
  • 39 Yamanaka H. Ohba S. Heterocycles 1990; 31: 895
  • 40 2-{(E)-[(1-Ethoxypyrazino[1,2-a]indol-3-yl)imino]methyl}phenol (4d); Typical Procedure A solution of dinitrile 1a (1 mmol, 181 mg) and salicylaldehyde (0.83 mmol, 0.088 mL) in EtOH (5 mL) at reflux was treated with K2CO3 (2 mmol, 276 mg). After 3 h of vigorous stirring at reflux, the precipitate was collected by filtration, washed with H2O (3 × 10 mL) and EtOH (1 mL), and dried in air to give a yellow solid; yield: 173 mg (63%); mp 199 °С. IR (KBr): 3430, 3336 cm–1. 1H NMR (600 MHz, DMSO-d 6): δ = 1.47 (t, J = 7.1, 3 H), 4.67 (q, J = 7.1, 2 H), 6.92–6.97 (m, 2 H), 7.10 (s, 1 H), 7.32–7.41 (m, 3 H), 7.66 (dd, J = 7.7, 1.5, 1 H), 7.85 (d, J = 7.7, 1 H), 8.29 (d, J = 8.1, 1 H), 8.85 (s, 1 H), 9.36 (s, 1 H), 12.97 (s, 1 H). 13C NMR (150 MHz, DМSО-d 6): δ = 14.8, 62.8, 96.7, 110.8, 112.7, 117.1, 119.7, 120.3, 122.7, 122.9, 123.3, 124.1, 128.6, 132.2, 132.6, 132.9, 137.2, 155.8, 158.6, 160.4. ESI-MS: m/z = 332 [M + H]+. Anal. Calcd for C20H17N3O2 (331.37): C 72.49; H 5.17; N 12.68. Found: C 72.31; H 5.14; N 12.45.
  • 41 Festa AA. Storozhenko OA. Bella Ndoutome DR. Varlamov AV. Voskressensky LG. Mendeleev Commun. 2017; 27: 451
  • 42 X-ray diffraction data for 4d were collected on a Bruker APEX DUO diffractometer [λ(MoKα) = 0.71073 Å, ω-scans, 2θ < 56°]. Yellow crystals of C20H17N3O2 at 120(2) K are monoclinic, space group P21/c, a = 17.855(3), b = 5.7930(8), c = 15.267(2) Å, β = 96.335(3)°, V = 1569.5(4) Å3, Z = 4 (Z′ = 1), dcalc = 1.402 g cm–3. Intensities of 3789 independent reflections (Rint = 0.0876) out of 17025 collected were used in structure solution and refinement. The structure was solved by direct methods and refined by the full-matrix least-squares technique against F2 in anisotropic approximation. The hydrogen atom connected to the oxygen atom was found from difference Fourier synthesis and refined isotropically. Other hydrogen atoms were placed in calculated positions and refined in the riding model with Uiso(H) equal to 1.5 Ueq(Cm) and 1.2 Ueq(Ci) of the connected methyl and other carbon atoms. The refinement converged to R1 = 0.0499 [calculated for 2473 observed reflections with I > 2σ(I), wR2 = 0.1015, and GOF = 0.999]. All calculations were performed with the SHELX software package (see Ref. 43). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Center with the accession number CCDC 1580729, and can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures.
  • 43 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3