Synthesis 2018; 50(09): 1883-1890
DOI: 10.1055/s-0036-1591543
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Cyclic 3-Aryl-Substituted 1,2-Dicarbonyl Compounds via Suzuki Cross-Coupling Reactions

Eleana Lopušanskaja
Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Estonia   Email: margus.lopp@ttu.ee
,
Anne Paju
Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Estonia   Email: margus.lopp@ttu.ee
,
Ivar Järving
Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Estonia   Email: margus.lopp@ttu.ee
,
Margus Lopp*
Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, Tallinn, Estonia   Email: margus.lopp@ttu.ee
› Author Affiliations
This work has been supported by the Estonian Ministry of Education and Research grants IUT 19-32 and IUT23-7 and the Centre of Excellence in Molecular Cell Engineering (No. 2014-2020.4.01.15-0013).

Further Information

Publication History

Received: 17 December 2017

Accepted after revision: 19 January 2018

Publication Date:
12 February 2018 (online)


Abstract

A method for the synthesis of cyclic 3-aryl- and heteroaryl-substituted 1,2-dicarbonyl compounds with different ring sizes by using a Suzuki cross-coupling reaction between 3-halo-1,2-dicarbonyl compounds and arylboronic acids is developed. The 3-halo-1,2-dicarbonyl substrates are easily available from 1,2-dicarbonyl compounds. The method is versatile, affording good to high yields of the target compounds.

Supporting Information

 
  • References

    • 1a Wang Z. Reinus BJ. Dong G. J. Am. Chem. Soc. 2012; 134: 13954
    • 1b Tanyeli C. Özdemirhan D. Tetrahedron 2005; 61: 8212
    • 1c Utaka M. Fujii Y. Takeda A. Chem. Lett. 1985; 1123
  • 2 Enholm EJ. Moran KM. Whitley PE. Battiste MA. J. Am. Chem. Soc. 1998; 120: 3807
  • 3 Trost BM. Schoeder GM. J. Am. Chem. Soc. 2000; 122: 3785
    • 4a Paju A. Kanger T. Pehk T. Lindmaa R. Müürisepp A.-M. Lopp M. Tetrahedron: Asymmetry 2003; 14: 1565
    • 4b Paju A. Oja K. Matkevitš K. Lumi P. Järving I. Pehk T. Lopp M. Heterocycles 2014; 88: 981
    • 5a Schow SR. Bloom JD. Thompson AS. Winzenberg KN. Smith AB. J. Am. Chem. Soc. 1986; 108: 2662
    • 5b Kraus GA. Thomas PJ. J. Org. Chem. 1986; 51: 503
    • 5c Trost BM. Dong G. Vance JA. Chem. Eur. J. 2010; 16: 6265
    • 5d Quinkert G. Schmalz HG. Walzer E. Gross S. Kowalczyk-Przewloka T. Schierloh C. Dürner G. Bats JW. Kessler H. Liebigs Ann. Chem. 1988; 4: 283
  • 6 Namiki T. Nishikawa M. Itoh Y. Uchida I. Hasimoto M. J. Antibiot. 1987; 40: 1400
  • 7 Leblanc Y. Roy P. Boyce S. Brideau C. Chan CC. Charleson S. Gordon R. Grimm E. Guay J. Leger S. Li CS. Riendeau D. Visco D. Wang Z. Webb J. Xu LJ. Prasit P. Bioorg. Med. Chem. Lett. 1999; 9: 2207
    • 8a Rao KV. Sadhukhan AK. Veerender M. Ravikumar V. Mohan EV. S. Dhanvantri SD. Sitaramkumar M. Moses Babu J. Vyas K. Om Reddy G. Chem. Pharm. Bull. 2000; 48: 559
    • 8b Ye Y.-Q. Xia C.-F. Yang J.-X. Yang Y.-C. Gao X.-M. Du G. Yang H.-Y. Li X.-M. Hu Q.-F. Heterocycles 2014; 89: 2177
    • 8c Haritakun R. Rachtawee P. Chanthaket R. Boonyuen N. Isaka M. Chem. Pharm. Bull. 2010; 58: 1545
    • 9a Weber V. Coudert P. Rubat C. Duroux E. Vallee-Goyet D. Gardette D. Bria M. Albuisson E. Leal F. Gramain J.-C. Couqueleta J. Madesclairea M. Bioorg. Med. Chem. 2002; 10: 1647
    • 9b Bailly F. Queffelec C. Mbemba G. Mouscadet J.-F. Pommery N. Pommery J. Henichart J.-P. Cotelle P. Eur. J. Med. Chem. 2008; 43: 1222
    • 10a Jõgi A. Paju A. Pehk T. Kailas T. Müürisepp A.-M. Kanger T. Lopp M. Synthesis 2006; 3031
    • 10b Jõgi A. Paju A. Pehk T. Kailas T. Müürisepp A.-M. Lopp M. Tetrahedron 2009; 65: 2959
    • 11a House HO. Wasson RL. J. Am. Chem. Soc. 1957; 79: 1488
    • 11b Brussel WV. Vandewalle M. Synthesis 1976; 39
    • 11c Reile I. Kalle S. Werner F. Järving I. Kudrjashova M. Paju A. Lopp M. Tetrahedron 2014; 70: 3608
  • 12 Stetter H. Schlenker W. Tetrahedron Lett. 1980; 21: 3479
    • 13a Feigenbaum A. Pete JP. Scholler D. J. Org. Chem. 1984; 49: 2355
    • 13b Tomari K. Machiya K. Ichimoto I. Ueda H. Biol. Chem. 1980; 44: 2135
    • 13c Poquet AL. Feigenbaum A. Pete JP. Tetrahedron Lett. 1986; 27: 2975
    • 14a Charonnat JA. Mitchell AL. Keogh BP. Tetrahedron Lett. 1990; 31: 315
    • 14b Horiuchi A. Kiyomiya H. Takahashi M. Suzuki Y. Synthesis 1989; 785
    • 14c Kawada K. Gross RS. Watt DS. Synth. Commun. 1989; 19: 777
    • 15a Garg N. Larhed M. Hallberg A. J. Org. Chem. 1998; 63: 4158
    • 15b Svennebring A. Garg N. Nilsson P. Hallberg A. Larhed M. J. Org. Chem. 2005; 70: 4720
    • 16a Lee D. Newman SG. Taylor MS. Org. Lett. 2009; 11: 5486
    • 16b Zhang B. Jiang Z. Zhou X. Lu S. Li J. Liu Y. Li C. Angew. Chem. Int. Ed. 2012; 51: 13159
    • 17a Zhou Z. Walleser PM. Tius MA. Chem. Commun. 2015; 51: 10858
    • 17b Everett RK. Wolfe JP. Org. Lett. 2013; 15: 2926
    • 17c Zask A. J. Org. Chem. 1992; 57: 4558
  • 18 Chen HS. Ma XP. Li ZM. Wang QR. Tao FG. Chin. Chem. Lett. 2008; 19: 1309
    • 19a Paju A. Kostomarova D. Matkevitš K. Laos M. Pehk T. Kanger T. Lopp M. Tetrahedron 2015; 71: 9313
    • 19b Paju A. Kanger T. Mürisepp A.-M. Aid T. Pehk T. Lopp M. Tetrahedron 2014; 70: 5843
    • 20a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 20b Kotha S. Lahiri K. Kasinath D. Tetrahedron 2002; 58: 9633
  • 21 Sha CK. Ho WY. J. Chin. Chem. Soc. 1999; 46: 469
  • 22 Tamiri T. Ben Ari J. Zitrin S. Mandelbaum A. Int. J. Mass Spectrom. 2003; 228: 191
  • 23 Liang Q. Xing P. Huang Z. Dong J. Sharpless KB. Li X. Jiang B. Org. Lett. 2015; 17: 1942
  • 24 Yang C. Edsall RJr. Harris HA. Zhang X. Manas ES. Mewshaw RE. Bioorg. Med. Chem. 2004; 12: 2553