Synthesis 2018; 50(04): 742-752
DOI: 10.1055/s-0036-1591735
feature
© Georg Thieme Verlag Stuttgart · New York

Complex Polycycles from Simple Propargyl Alcohols through Ruthenium-Catalyzed Cascade Reactions and One-Pot Procedures

Elisabeth Jäckel
Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: edgar.haak@ovgu.de
,
Julia Kaufmann
Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: edgar.haak@ovgu.de
,
Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: edgar.haak@ovgu.de
› Author Affiliations
This work was funded by the German Research Foundation DFG (HA 3554/7-1).
Further Information

Publication History

Received: 27 September 2017

Accepted: 07 November 2017

Publication Date:
29 November 2017 (online)


Abstract

Multiple bond-forming cascade transformations and one-pot procedures are valuable tools in organic synthesis and drug discovery. These atom-economical processes provide rapid access to natural product-like scaffolds from simple precursors. Herein, we report on ruthenium-catalyzed one-pot conversions of simple 1-alkenyl propargyl alcohols with cyclic 3-ketolactones and dienophiles. Thereby, structurally diverse fused polycycles and functionalized bicyclic structures are accessible from a common precursor with high selectivity. Some of the new drug-like molecules exhibit cytotoxic activity against KB cells.

Supporting Information

 
  • References

    • 1a Kotha S. Panguluri NR. Ali R. Eur. J. Org. Chem. 2017; 5316
    • 1b Hu Y. Bai M. Yang Y. Zhou Q. Org. Chem. Front. 2017; 4: 2256
    • 1c Haak E. Eur. J. Org. Chem. 2017; 940
    • 1d Raviola C. Protti S. Ravelli D. Fagnoni M. Chem. Soc. Rev. 2016; 45: 4364
    • 1e Harris RJ. Widenhoefer RA. Chem. Soc. Rev. 2016; 45: 4533
    • 1f Genêt J.-P. Toullec PY. Michelet V. In Modern Alkyne Chemistry . Trost BM. Li C.-J. Wiley-VCH; Weinheim: 2014: 27-68
    • 1g Kumari AL. S. Reddy AS. Swamy KC. K. Org. Biomol. Chem. 2016; 14: 6651
    • 1h Watson ID. G. Toste FD. Chem. Sci. 2012; 3: 2899
    • 1i Pérez-Galán P. López-Carillo V. Echavarren AM. Contrib. Sci. 2010; 6: 143
    • 1j Jiménez-Núñez E. Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 1k Michelet V. Toullec PY. Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268; Angew. Chem. 2008, 120, 4338
    • 1l Zhang L. Sun J. Kozmin SA. Adv. Synth. Catal. 2006; 348: 2271
    • 1m Bruneau C. Dérien S. Dixneuf PH. Top. Organomet. Chem. 2006; 19: 295
    • 2a Ardkhean R. Caputo DF. J. Morrow SM. Shi H. Xiong Y. Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
    • 2b Stathakis CI. Gkizis PL. Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
    • 2c Jones AC. May JA. Sarpong R. Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556; Angew. Chem. 2014, 126, 2590
    • 2d Tietze LF. Brasche B. Gericke K. In Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006: 359-493
    • 2e Nicolaou KC. Edmonds DJ. Bulger PB. Angew. Chem. Int. Ed. 2006; 45: 7134; Angew. Chem. 2006, 118, 7292
    • 3a Wang Y. Lu H. Xu PF. Acc. Chem. Res. 2015; 48: 1832
    • 3b Wang Y. Zhang L. Lu P. Gao H. Zhang J. Xu P.-F. Wei H. In Catalytic Cascade Reactions . Xu P.-F. Wang W. John Wiley & Sons; Hoboken: 2014: 145-331
    • 3c Kumar K. In Concepts and Case Studies in Chemical Biology . Waldmann H. Janning P. Wiley-VCH; Weinheim: 2014: 391-414
    • 3d Negishi E.-I. Wang G. Zhu G. von Zezschwitz P. De Meijere A. Patil NT. Yamamoto Y. Balme G. Bouyssi D. Monteiro N. Müller TJ. J. Pérez-Castells J. Aubert C. Fensterbank L. Gandon V. Malacria M. Bruneau C. Dérien S. Dixneuf PH. In Metal Catalyzed Cascade Reactions . Müller TJ. J. Springer; Berlin: 2006: 1-340
    • 4a Thies N. Haak E. Angew. Chem. Int. Ed. 2015; 54: 4097; Angew. Chem. 2015, 127, 4170
    • 4b Thies N. Gerlach M. Haak E. Eur. J. Org. Chem. 2013; 7354
    • 4c Jonek A. Berger S. Haak E. Chem. Eur. J. 2012; 18: 15504
    • 4d Thies N. Hrib CG. Haak E. Chem. Eur. J. 2012; 18: 6302
    • 4e Berger S. Haak E. Tetrahedron Lett. 2010; 51: 6630
    • 4f Haak E. Eur. J. Org. Chem. 2008; 788
    • 4g Haak E. Eur. J. Org. Chem. 2007; 2815
  • 5 For a recent review on dendralene chemistry, see: Green NJ. Saglam NF. Newton CG. Sherburn MS. In Cross Conjugation: Modern Dendralene, Radialene and Fulvene Chemistry . Hopf H. Sherburn MS. Wiley-VCH; Weinheim: 2016
    • 6a Niwayama S. Tetrahedron Lett. 2000; 41: 10163
    • 6b Niwayama S. Kobayashi S. Ohno M. J. Am. Chem. Soc. 1994; 116: 3290
    • 6c Niwayama S. Noguchi H. Ohno M. Kobayashi S. Tetrahedron Lett. 1993; 34: 665
    • 6d Niwayama S. Kobayashi S. Ohno M. Tetrahedron Lett. 1988; 29: 6313
  • 7 Determination of cytotoxic activities (5d assay; 10% DMSO, 90% MeOH) was performed by Dr. Herbert A. Weich and Wera Collisi, Helmholtz-Centre for Infection Research HZI, Braunschweig, Germany