Synlett 2018; 29(02): 141-147
DOI: 10.1055/s-0036-1591741
synpacts
© Georg Thieme Verlag Stuttgart · New York

Emergence of Stimuli-Controlled Switchable Bifunctional Catalysts

Joyanta Choudhury*
Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhopal 462 066, India   Email: joyanta@iiserb.ac.in
,
Shrivats Semwal
Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhopal 462 066, India   Email: joyanta@iiserb.ac.in
› Author Affiliations
Generous financial support from IISER Bhopal is gratefully acknowledged. S.S. thanks UGC, Govt. of India for senior research fellowship.
Further Information

Publication History

Received: 22 October 2017

Accepted after revision: 20 November 2017

Publication Date:
19 December 2017 (online)

Dedicated to Professor Milko E. van der Boom on the occasion of his 48th birthday

Abstract

Can a single catalyst perform more than one ‘type’ of reaction? If we consider traditional design of catalysts, then the answer would probably be ‘no’. However, with the advancement of catalyst design concepts, chemists have been able to demonstrate the above task, thanks to ‘stimuli-switchable bifunctional catalysts’. Within the nascent research area of ‘artificial switchable catalysis’, this new type of system offers the potential to achieve complex functions which are otherwise difficult or impossible. This Synpacts article highlights the rise of these new-generation catalysts.

1 Introduction

2 Key Advances

3 Conclusion

 
  • References


    • For recent reviews on switchable catalysis, see:
    • 1a Blanco V. Leigh DA. Marcos V. Chem. Soc. Rev. 2015; 44: 5341
    • 1b Neilson BM. Bielawski CW. ACS Catal. 2013; 3: 1874
    • 1c Teator AJ. Lastovickova DN. Bielawski CW. Chem. Rev. 2016; 116: 1969
    • 1d Romanazzi G. Degennaro L. Mastrorilli P. Luisi R. ACS Catal. 2017; 7: 4100
    • 1e Yu Z. Hecht S. Chem. Commun. 2016; 52: 6639
    • 1f Guillaume SM. Kirillov E. Sarazin Y. Carpentier J.-F. Chem. Eur. J. 2015; 21: 7988
    • 1g Wang F. Liu X. Willner I. Angew. Chem. Int. Ed. 2015; 54: 1098
    • 1h Schmittel M. Chem. Commun. 2015; 51: 14956
    • 1i Lifschitz AM. Rosen MS. McGuirk CM. Mirkin CA. J. Am. Chem. Soc. 2015; 137: 7252
    • 1j Göstl R. Senf A. Hecht S. Chem. Soc. Rev. 2014; 43: 1982
    • 1k Leibfarth FA. Mattson KM. Fors BP. Collins HA. Hawker CJ. Angew. Chem. Int. Ed. 2013; 52: 199
    • 1l Stoll RS. Hecht S. Angew. Chem. Int. Ed. 2010; 49: 5054
    • 1m Lüning U. Angew. Chem. Int. Ed. 2012; 51: 8163

      For reviews, see:
    • 2a Cheng C. Stoddart JF. ChemPhysChem 2016; 17: 1780
    • 2b Stoddart JF. Angew. Chem. Int. Ed. 2017; 56: 11094
    • 2c Sauvage J.-P. Angew. Chem. Int. Ed. 2017; 56: 11080
    • 2d Feringa BL. Angew. Chem. Int. Ed. 2017; 56: 11060
    • 2e Zhang Q. Qu D.-H. ChemPhysChem 2016; 17: 1759
    • 2f Erbas-Cakmak S. Leigh DA. McTernan CT. Nussbaumer AL. Chem. Rev. 2015; 115: 10081
  • 3 Beswick J. Blanco V. Bo GD. Leigh DA. Lewandowska U. Lewandowski B. Mishiro K. Chem. Sci. 2015; 6: 140
  • 4 Kwan C.-S. Chan AS. C. Leung KC.-F. Org. Lett. 2016; 18: 976
  • 5 De S. Pramanik S. Schmittel M. Angew. Chem. Int. Ed. 2014; 53: 14255
  • 6 Mittal N. Pramanik S. Paul I. De S. Schmittel M. J. Am. Chem. Soc. 2017; 139: 4270
  • 7 Biernesser AB. Chiaie KR. D. Curley JB. Byers JA. Angew. Chem. Int. Ed. 2016; 55: 5251
  • 8 Treator AJ. Shao H. Lu G. Liu P. Bielawski CW. Organometallics 2017; 36: 490
  • 9 Fogg DE. dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
    • 10a Arisawa M. Fuji Y. Kato H. Fukuda H. Matsumoto T. Ito M. Abe H. Ito Y. Shuto S. Angew. Chem. Int. Ed. 2013; 52: 1003
    • 10b Aillerie A. Rodriguez-Ruiz V. Carlino R. Bourdreux F. Guillot R. Bezzenine-Lafollée S. Gil R. Prim D. Hannedouche J. ChemCatChem 2016; 8: 2455
    • 10c Schmidt B. Krehl S. Jablowski E. Org. Biomol. Chem. 2012; 10: 5119
    • 10d Schmidt B. Krehl S. Hauke S. J. Org. Chem. 2013; 78: 5427
    • 10e Kato H. Ishigame T. Oshima N. Hoshiya N. Shimawaki K. Arisawa M. Shuto S. Adv. Synth. Catal. 2011; 353: 2676
  • 11 Semwal S. Choudhury J. ACS Catal. 2016; 6: 2424
  • 12 Semwal S. Choudhury J. Angew. Chem. Int. Ed. 2017; 56: 5556
  • 13 Eichstaedt K. Jaramillo-Garcia J. Leigh DA. Marcos V. Pisano S. Singleton TA. J. Am. Chem. Soc. 2017; 139: 9376
  • 14 Gaikwad S. Goswami A. De S. Schmittel M. Angew. Chem. Int. Ed. 2016; 55: 10512