Synlett 2018; 29(09): 1125-1130
DOI: 10.1055/s-0036-1591776
synpacts
© Georg Thieme Verlag Stuttgart · New York

The Synthesis of (–)-Spiroleucettadine

Richard A. Lamb
a  Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand   Email: bhawkins@chemistry.otago.ac.nz
,
Guillaume Lessene*
b  The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia   and Department of Medical Biology and Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3050, Australia   Email: glessene@wehi.edu.au
,
a  Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand   Email: bhawkins@chemistry.otago.ac.nz
› Author Affiliations
Support for this research from the NHMRC (fellowship for G.L. GNT1117089), from the Australian Cancer Research Foundation, the Victorian State Government Operational Infrastructure Support, and Australian Government NHMRC IRIISS is gratefully acknowledged.
Further Information

Publication History

Received: 04 February 2018

Accepted after revision: 19 February 2018

Publication Date:
05 March 2018 (online)

Abstract

The interesting history of (–)-spiroleucettadine, a marine natural product, is discussed along with some of our original unsuccessful synthetic strategies. Finally, we briefly discuss our reported enantiospecific synthesis of spiroleucettadine, and how we plan to use this as a platform for further studies around this interesting class of molecules.

 
  • References

  • 1 Ralifo P. Crews P. J. Org. Chem. 2004; 69: 9025
  • 2 Koswatta PB. Lovely CJ. Nat. Prod. Rep. 2011; 28: 511

    • Natural products containing 5,5-trans-fused ring systems. For Palau’amine isolation, see:
    • 3a Kinnel RB. Gehrken HP. Scheuer PJ. J. Am. Chem. Soc. 1993; 115: 3376
    • 3b Kinnel RB. Gehrken HP. Swali R. Skoropowski G. Scheuer PJ. J. Org. Chem. 1998; 63: 3281

    • For structural reassignment, see:
    • 3c Grube A. Köck M. Angew. Chem. Int. Ed. 2007; 46: 2320
    • 3d Kobayashi H. Kitamura K. Nagai K. Nakao Y. Fusetani N. van Soest RW. M. Matsunaga S. Tetrahedron Lett. 2007; 48: 2127
    • 3e Buchanan MS. Carroll AR. Quinn RJ. Tetrahedron Lett. 2007; 48: 4573
    • 3f Enoki N. Furusaki A. Suehiro K. Ishida R. Matsumoto T. Tetrahedron Lett. 1983; 24: 4341

    • For α-funebrene, see:
    • 3g Kirtany JK. Paknikar SK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1973; 11: 508

    • For paradalianchol, see:
    • 3h Bohlmann F. Abraham WF. Phytochemistry 1979; 18: 668

    • For α-8-hydroxypresilphiperfolene, see:
    • 3i Bohlmann WF. Zdero C. Jakupovic J. Robinson H. King RM. Phytochemistry 1981; 20: 2239
  • 4 Li C. Danishefsky SJ. Tetrahedron Lett. 2006; 47: 385
  • 5 Chang JJ. Chan B. Ciufolini MA. Tetrahedron Lett. 2006; 47: 3599
    • 6a Varvoglis A. Tetrahedron 1997; 53: 1179
    • 6b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 6c Moriarty RM. J. Org. Chem. 2005; 70: 2893
    • 6d Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 6e Wong Y.-S. Chem. Commun. 2002; 686
    • 7a Burgess K. Lim D. Ho K.-K. Ke C.-Y. J. Org. Chem. 1994; 59: 2179
    • 7b Ma D. Xia C. Jiang J. Zhang J. Tang W. J. Org. Chem. 2003; 68: 442
  • 8 Powell DA. Ramsden PD. Batey RA. J. Org. Chem. 2003; 68: 2300
  • 9 Aberle N. Ovenden SP. B. Lessene G. Watson KG. Smith BJ. Tetrahedron Lett. 2007; 48: 2199
  • 10 White KN. Amagata T. Oliver AG. Tenney K. Wenzel PJ. Crews P. J. Org. Chem. 2008; 73: 8719
    • 11a Aberle N. Lessene G. Watson KG. Org. Lett. 2006; 8: 419
    • 11b Aberle N. Catimel J. Nice EC. Watson KG. Bioorg. Med. Chem. Lett. 2007; 17: 3741
  • 12 A structurally related spironaamidine was recently isolated, see: Nagasawa Y. Kato H. Rotinsulu H. Mangindaan RE. P. de Voogd NJ. Tsukamoto S. Tetrahedron Lett. 2011; 52: 5342
  • 13 Lamb RA. Aberle N. Lucas NT. Lessene G. Hawkins BC. Angew. Chem. Int. Ed. 2017; 56: 14663
  • 14 Nicolaou KC. Mathison CJ. N. Angew. Chem. Int. Ed. 2005; 44: 5992