Synthesis 2018; 50(09): 1737-1749
DOI: 10.1055/s-0036-1591777
review
© Georg Thieme Verlag Stuttgart · New York

Cu-Catalyzed Borylative and Silylative Transformations of Allenes: Use of β-Functionalized Allyl Copper Intermediates in Organic Synthesis

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Email: tfuji@scl.kyoto-u.ac.jp   Email: ytsuji@scl.kyoto-u.ac.jp
,
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Email: tfuji@scl.kyoto-u.ac.jp   Email: ytsuji@scl.kyoto-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 29 September 2017

Accepted after revision: 21 November 2017

Publication Date:
20 March 2018 (online)


Abstract

Herein, copper-catalyzed borylative and silylative transformations of allenes using borylcopper or silylcopper as the active catalytic species are described. First, the synthesis and characterization of borylcopper and silylcopper complexes are briefly introduced. Next, the borylative transformations of allenes are summarized including hydro­boration, carboboration, and borylative allylation of carbonyl compounds. We next deal with the silylative transformations of allenes such as hydrosilylation, carbosilylation, and silylative allylation of carbonyl compounds.

1 Introduction

2 Synthesis of Borylcopper and Silylcopper Complexes

3 Borylative Transformations

4 Silylative Transformations

5 Conclusions and Future Outlook

 
  • References

    • 1a The Chemistry of Organocopper Compounds . Rappoport Z. Marek I. Wiley; Chichester: 2009
    • 1b Tsuji Y. Fujihara T. In Sustainable Catalysis: With Non-endangered Metals, Part 2 . North M. The Royal Society of Chemistry; Cambridge: 2016: 1-40
    • 2a Shi W. Lei A. Tetrahedron 2014; 55: 2763
    • 2b Siemsen P. Livingston RC. Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
    • 3a Ribas X. Güell I. Pure Appl. Chem. 2014; 86: 345
    • 3b Casitas A. Ribas X. Chem. Sci. 2013; 4: 2301
    • 3c Surry DS. Buchwald SL. Chem. Sci. 2010; 1: 13
    • 3d Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 3e Evano G. Blanchard N. Toumi M. Chem. Rev. 2008; 108: 3054
  • 4 Phosphorus(III) Ligands in Homogeneous Catalysis . Kamer PC. J. van Leeuwen PW. N. M. Wiley; Chichester: 2012
  • 5 N-Heterocyclic Carbenes in Synthesis . Nolan SP. Wiley-VCH; Weinheim: 2006
    • 7a Rao W.-H. Shi B.-F. Org. Chem. Front. 2016; 3: 1028
    • 7b Hirano K. Miura M. Chem. Lett. 2015; 44: 868
    • 7c Hirano K. Miura M. Chem. Commun. 2012; 48: 10704
    • 8a Chiba S. Tetrahedron Lett. 2016; 57: 3678
    • 8b Chemler SR. Karyakarte SD. Khoder ZM. J. Org. Chem. 2017; 82: 11311
    • 9a Semba K. Fujihara T. Terao J. Tsuji Y. Tetrahedron 2015; 71: 2183
    • 9b Tsuji Y. Fujihara T. Chem. Rec. 2016; 16: 2294
    • 9c Yoshida H. ACS Catal. 2016; 6: 1799
    • 9d Yoshida H. Chem. Rec. 2016; 16: 419
    • 9e Yun J. Asian J. Org. Chem. 2013; 2: 1016
    • 10a Modern Allene Chemistry . Krause N. Hashmi AS. K. Wiley-VCH; Weinheim: 2004
    • 10b Ma S. Chem. Rev. 2005; 105: 2829
    • 10c Jeganmohan M. Cheng C.-H. Chem. Commun. 2008; 3101
    • 10d Yu S. Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
  • 11 Laitar DS. Müller P. Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
  • 12 Semba K. Shinomiya M. Fujihara T. Terao J. Tsuji Y. Chem.–Eur. J. 2013; 19: 7125
  • 13 Kleeberg C. Cheung MS. Lin Z. Marder TB. J. Am. Chem. Soc. 2011; 133: 19060
  • 14 Plotzitzka J. Kleeberg C. Inorg. Chem. 2016; 55: 4813
  • 15 Sgro MJ. Piers WE. Romero PE. Dalton Trans. 2015; 44: 3817
  • 16 Thorpe SB. Guo X. Santos WL. Chem. Commun. 2011; 47: 424
  • 17 Yuan W. Zhang X. Yu Y. Ma S. Chem.–Eur. J. 2013; 19: 7193
  • 18 Yuan W. Ma S. Adv. Synth. Catal. 2012; 354: 1867
  • 19 Meng F. Jung B. Haeffner F. Hoveyda AH. Org. Lett. 2013; 15: 1414
  • 20 Yuan W. Song L. Ma S. Angew. Chem. Int. Ed. 2016; 55: 3140
  • 21 Song L. Yuan W. Ma S. Org. Chem. Front. 2017; 4: 1261
  • 22 Jang H. Jung B. Hoveyda AH. Org. Lett. 2014; 16: 4658
  • 23 Semba K. Bessho N. Fujihara T. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2014; 53: 9007
  • 24 Meng F. McGrath KP. Hoveyda AH. Nature (London) 2014; 513: 367
  • 25 Meng F. Li X. Torker S. Shi Y. Shen X. Hoveyda AH. Nature (London) 2016; 537: 387
  • 26 Fujihara T. Sawada A. Yamaguchi T. Tani Y. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2017; 56: 1539
  • 27 Boreux A. Indukuri K. Gagosz F. Riant O. ACS Catal. 2017; 7: 8200
  • 28 Zhou Y. You W. Smith KB. Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
  • 29 Kageyuki I. Itaru O. Takaki K. Yoshida H. Org. Lett. 2017; 19: 830
  • 30 Zhao Y.-S. Tang X.-Q. Tao J.-C. Tian P. Lin G.-Q. Org. Biomol. Chem. 2016; 14: 4400
  • 31 Zhao W. Montgomery J. J. Am. Chem. Soc. 2016; 138: 9763
  • 32 Meng F. Jang H. Jung B. Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 5046
  • 33 Rae J. Yeung K. McDouall JJ. W. Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 1102
  • 34 Yeung K. Ruscoe RE. Rae J. Pulis AP. Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 11912
  • 35 Jang H. Romiti F. Torker S. Hoveyda AH. Nature Chem. 2017; 9: 1269
  • 36 Semba K. Fujihara T. Terao J. Tsuji Y. Angew. Chem. Int. Ed. 2013; 52: 12400
  • 37 Takemoto Y. Yoshida H. Takaki K. Synthesis 2014; 46: 3024
  • 38 Xu Y.-H. Wu L.-H. Wang J. Loh T.-P. Chem. Commun. 2014; 50: 7195
  • 39 Pashikanti S. Calderone JA. Nguyen MK. Sibley CD. Santos WL. Org. Lett. 2016; 18: 2443
  • 40 Rae J. Hu YC. Procter DJ. Chem.–Eur. J. 2014; 20: 13143
  • 41 Tani Y. Fujihara T. Terao J. Tsuji Y. J. Am. Chem. Soc. 2014; 136: 17706
  • 42 He Z.-T. Tang X.-Q. Xie L.-B. Chen M. Tian P. Lin G.-Q. Angew. Chem. Int. Ed. 2015; 54: 14815
  • 43 Tani Y. Yamaguchi T. Fujihara T. Terao J. Tsuji Y. Chem. Lett. 2015; 44: 271
  • 44 Yoshida H. Hayashi S. Takaki K. Chem. Commun. 2015; 51: 9440
  • 45 These are summarized in a review: Pulis AP. Yeung K. Procter DJ. Chem. Sci. 2017; 8: 5240