Synthesis 2018; 50(02): 267-277
DOI: 10.1055/s-0036-1591835
feature
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylative Synthesis of Functionalized Benzimidazopyrimidinones

Raffaella Mancuso
a   Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy   Email: lucia.veltri@unical.it   Email: bartolo.gabriele@unical.it
,
Lucia Veltri*
a   Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy   Email: lucia.veltri@unical.it   Email: bartolo.gabriele@unical.it
,
Patrizio Russo
a   Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy   Email: lucia.veltri@unical.it   Email: bartolo.gabriele@unical.it
,
Giuseppe Grasso
a   Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy   Email: lucia.veltri@unical.it   Email: bartolo.gabriele@unical.it
,
Corrado Cuocci
b   Istituto di Cristallografia, CNR, Via Amendola 122/O, 70124 Bari, Italy
,
Roberto Romeo
c   Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Via SS Annunziata, 98168 Messina, Italy
,
a   Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy   Email: lucia.veltri@unical.it   Email: bartolo.gabriele@unical.it
› Author Affiliations
Further Information

Publication History

Received: 28 September 2017

Accepted after revision: 25 October 2017

Publication Date:
23 November 2017 (online)


Abstract

A new and convenient approach to functionalized benzimidazopyrimidinones is reported. It is based on a two-step procedure starting from readily available 1-(prop-2-yn-1-yl)-1H-benzo[d]imidazol-2-amines, consisting of a multicomponent palladium-catalyzed oxidative cyclocarbonylation–alkoxycarbonylation process, followed by base-promoted isomerization of the initially formed mixture of isomeric carbonylated products. Fair to good overall yields of the final alkyl 2-(2-oxo-1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-3-yl)acetates are obtained, using different alcohols as solvent and nucleophile in the carbonylation step (carried out in the presence of 0.33–1 mol% PdI2 in conjunction with 17–50 mol% KI, at 100 °C and under 20 atm of a 4:1 mixture of CO–air) and the corresponding sodium alkoxide as base in the subsequent isomerization step (carried out in the alcoholic solvent at room temperature). The structures of a representative substrate [N-benzyl-1-(prop-2-yn-1-yl)-1H-benzo[d]imidazol-2-amine] and a representative product [methyl 2-(1-isopentyl-2-oxo-1,2-dihydrobenzo-[4,5]imidazo[1,2-a]pyrimidin-3-yl)acetate] were confirmed by X-ray diffraction analysis.

Supporting Information

 
  • References


    • See, for example:
    • 1a Kreutzberger A. Leger M. Arch. Pharm. 1983; 316: 582
    • 1b Zanatta N. Amaral SS. Esteves-Souza A. Echevarria A. Brondani PB. Flores DC. Bonacorso HG. Flores AF. C. Martins MA. P. Synthesis 2006; 2305
    • 1c Blythin DJ. Kaminski JJ. Domalski MS. Spitler J. Solomon DM. Conn DJ. Wong S.-C. Verbiar LL. Bober LA. Chius PJ. S. Watnik AS. Siegel MI. Hilbert JM. McPhail AT. J. Med. Chem. 1986; 29: 1099
    • 1d Chai D. Fitch DM. (SmithKline Beecham Corporation) PCT Int. Appl WO 2009/039322, 2009
    • 2a El-Gazzar AB. A. Egypt. J. Chem. 2002; 45: 995
    • 2b Shaabani A. Rahmati A. Rezayan AH. Khavasi HR. J. Iran. Chem. Soc. 2011; 8: 24
    • 2c Elnagdi MH. Wamhoff H. Chem. Lett. 1981; 419
    • 3a Dunwell DW. Evans D. J. Chem. Soc., Perkin Trans. 1 1973; 1588
    • 3b Al-Jallo HN. Muniem MA. J. Heterocycl. Chem. 1978; 15: 849
    • 3c Ogura H. Kawano M. Itoh T. Chem. Pharm. Bull. 1973; 21: 2019
    • 3d Troxler F. Weber HP. Helv. Chim. Acta 1974; 57: 2356
    • 3e Rudenko RV. Komykhov SA. Musatov VI. Konovalova IS. Shishkin OV. Desenko SM. J. Heterocycl. Chem. 2011; 48: 888
    • 3f Wang Y. Shafiq Z. Liu L. Wang D. Chen Y.-J. J. Heterocycl. Chem. 2010; 47: 373
    • 3g Zhuang Q. Li C. Tu S. Cao L. Zhou D. Shao Q. Guo C. J. Heterocycl. Chem. 2008; 45: 1299
    • 3h Lipson VV. Karnozhitskaya TM. Desenko SM. Shishkina SV. Shishkin OE. Musatov VI. Russ. J. Org. Chem. 2007; 43: 249
  • 4 Lipson VV. Orlov VD. Desenko SM. Shishkina SV. Shishkin OV. Shirobokova MG. Chem. Heterocycl. Compd. 2000; 36: 1039
  • 5 LaMattina JL. Mularski CJ. Muse DE. Tetrahedron 1988; 44: 3073

    • For some reviews, see:
    • 6a Peng J.-B. Qi X. Wu X.-F. Synlett 2017; 28: 175
    • 6b Transition Metal Catalyzed Carbonylative Synthesis of Heterocycles. In Topics in Heterocyclic Chemistry. Vol. 42. Wu X.-F. Beller M. Springer; Cham: 2016
    • 6c Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
    • 6d Gabriele B. Mancuso R. Salerno G. Eur. J. Org. Chem. 2012; 6825
    • 6e Omae I. Coord. Chem. Rev. 2011; 255: 139
    • 6f Gabriele B. Salerno G. Cyclocarbonylation . In Handbook of Organopalladium Chemistry for Organic Synthesis . Vol. II. Negishi E. Wiley-Interscience; New York: 2002: 2623-2641

      For reviews, see:
    • 7a Gabriele B. Salerno G. Costa M. Top. Organomet. Chem. 2006; 18: 239
    • 7b Gabriele B. Salerno G. PdI2 . In e-EROS Encyclopedia of Reagents for Organic Synthesis . Crich D. Wiley-Interscience; New York: 2006
    • 7c Gabriele B. Salerno G. Costa M. Chiusoli GP. Curr. Org. Chem. 2004; 8: 919
    • 7d Gabriele B. Salerno G. Costa M. Synlett 2004; 2468
    • 7e Gabriele B. Salerno G. Costa M. Chiusoli GP. J. Organomet. Chem. 2003; 687: 219

    • For very recent examples, see:
    • 7f Mancuso R. Raut DS. Marino N. De Luca G. Giordano C. Catalano S. Barone I. Andò S. Gabriele B. Chem. Eur. J. 2016; 22: 3053
    • 7g Veltri L. Paladino V. Plastina P. Gabriele B. J. Org. Chem. 2016; 81: 6106
    • 7h Veltri L. Grasso G. Rizzi R. Mancuso R. Gabriele B. Asian J. Org. Chem. 2016; 5: 560
    • 7i Veltri L. Mancuso R. Altomare A. Gabriele B. ChemCatChem 2015; 7: 2206
    • 7j Mancuso R. Raut DS. Della Ca’ N. Fini F. Carfagna C. Gabriele B. ChemSusChem 2015; 8: 2204

      For some recent examples from other groups, see:
    • 8a Xu T. Alper H. Org. Lett. 2015; 17: 1569
    • 8b Xie Y. Chen T. Fu S. Jiang H. Zeng W. Chem. Commun. 2015; 51: 9377
    • 8c Zeng F. Alper H. Org. Lett. 2011; 13: 2868
    • 8d Xu T. Alper H. Org. Lett. 2015; 17: 4526
    • 8e Yasuhara S. Sasa M. Kusakabe T. Takayama H. Kimura M. Mochida T. Kato K. Angew. Chem. Int. Ed. 2011; 50: 3912
  • 9 CCDC 1564263 (1a) and CCDC 1564271 (4fa) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 10 These conditions are outside the explosion limits for CO–air mixtures. The flammability limits for CO in air are ca. 16–70% at 18–20 °C and atmospheric pressure, and tend to decrease at higher total pressure; see: Bartish CM. Drissel GM. In Kirk-Othmer Encyclopedia of Chemical Technology . 3rd ed., Vol. 4; Grayson M. Eckroth D. Bushey GJ. Campbell L. Klingsberg A. van Nes L. Wiley-Interscience; New York: 1978: 7750
  • 11 Ueda S. Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 10364
  • 12 Orjales A. Mosquera R. Labeaga L. Rodes R. J. Med. Chem. 1997; 40: 586
  • 13 Staderini M. Bolognesi ML. Menndez JC. Adv. Synth. Catal. 2015; 357: 185
  • 14 Kemal O. Reese CB. J. Chem. Soc., Perkin Trans. 1 1981; 1569