Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(08): 1721-1727
DOI: 10.1055/s-0036-1591874
DOI: 10.1055/s-0036-1591874
paper
Transition-Metal-Free C–H Arylation of Unactivated Arenes with 8-Hydroxyquinoline as a Promoter
This work was supported by the Natural Science Foundation of China (21402243 and 81602955).Further Information
Publication History
Received: 18 October 2017
Accepted after revision: 30 November 2017
Publication Date:
23 January 2018 (online)

Abstract
A method for the transition-metal-free direct C–H arylation of unactivated arenes is developed with aryl bromides as substrates and 8-hydroxyquinoline as an efficient promoter. A variety of biaryl compounds with structural diversity are obtained in moderate to high yields. Mechanistic studies reveal that the reaction proceeds via a homolytic aromatic substitution pathway.
Key words
C–H arylation - metal-free - 8-hydroxyquinoline - biaryl compounds - homolytic aromatic substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591874.
- Supporting Information
-
References
- 1a Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
- 1b Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
- 1c Torborg C. Beller M. Adv. Synth. Catal. 2009; 351: 3027
- 1d Organotransition Metal Chemistry: From Bonding to Catalysis . Hartwig JF. University Science Books; Sausalito: 2010
- 2a Metal-Catalyzed Cross-Coupling Reactions . 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
- 2b Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. 2nd ed.; Beller M. Bolm C. Wiley-VCH; Weinheim: 2004
- 2c Corbet J.-P. Mignani G. Chem. Rev. 2006; 106: 2651
- 2d Ackermann L. Modern Arylation Methods . Wiley-VCH; Weinheim: 2009
- 2e Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 3a Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 3b Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 3c Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 4 Yanagisawa S. Ueda K. Taniguchi T. Itami K. Org. Lett. 2008; 10: 4673
- 5 Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang HB. Kwong FY. Lei A. J. Am. Chem. Soc. 2010; 132: 16737
- 6 Shirakawa E. Itoh K.-i. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
- 7 Sun C.-L. Li H. Yu D.-G. Yu M. Zhou X. Lu X.-Y. Huang K. Zheng S.-F. Li B.-J. Shi Z.-J. Nat. Chem. 2010; 2: 1044
- 8a Chan TL. Wu Y. Choy PY. Kwong FY. Chem. Eur. J. 2013; 19: 15802
- 8b Qiu Y. Liu Y. Yang K. Hong W. Li Z. Wang Z. Yao Z. Jiang S. Org. Lett. 2011; 13: 3556
- 8c Yong GP. She WL. Zhang YM. Li YZ. Chem. Commun. 2011; 47: 11766
- 8d Liu H. Yin B. Gao Z. Li Y. Jiang H. Chem. Commun. 2012; 48: 2033
- 8e Ng YZ. Chan CS. Chan KS. Tetrahedron Lett. 2012; 53: 3911
- 8f To CT. Chan TL. Li BZ. Hui YY. Kwok TY. Lam SY. Chan KS. Tetrahedron Lett. 2011; 52: 1023
- 8g Chen W.-C. Hsu Y.-C. Shih W.-C. Lee C.-Y. Chuang W.-H. Tsai Y.-F. Chen PP.-Y. Ong T.-G. Chem. Commun. 2012; 48: 6702
- 8h Tanimoro K. Ueno M. Takeda K. Kirihata M. Tanimori S. J. Org. Chem. 2012; 77: 7844
- 8i Zhao H. Shen J. Guo J. Ye R. Zheng H. Chem. Commun. 2013; 49: 2323
- 8j Liu W. Tian F. Wang X. Yu H. Bi Y. Chem. Commun. 2013; 49: 2983
- 8k Ghosh D. Lee JY. Liu CY. Chiang YH. Lee HM. Adv. Synth. Catal. 2014; 356: 406
- 8l Song Q. Zhang D. Zhu Q. Xu Y. Org. Lett. 2014; 16: 5272
- 8m Liu W. Xu L. Tetrahedron 2015; 71: 4974
- 9 Oliveri V. Vecchio G. Eur. J. Med. Chem. 2016; 120: 252
- 10a Albrecht M. Fiege M. Osetska O. Coord. Chem. Rev. 2008; 252: 812
- 10b Prachayasittikul V. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Drug Des. Dev. Ther. 2013; 7: 1157
- 11 Wu Y. Choy PY. Kwong FY. Org. Biomol. Chem. 2014; 12: 6820
- 12 Wu Y. Wong SM. Mao F. Chan TL. Kwong FY. Org. Lett. 2012; 14: 5306
- 13 Dai ZQ. Liu KQ. Zhang ZY. Wei BM. Guan JT. Asian J. Chem. 2013; 25: 6303
- 14 Wang H. Wang B. Li B. J. Org. Chem. 2017; 82: 9560
- 15 Gund SH. Balsane KE. Nagarkar JM. Tetrahedron Lett. 2017; 58: 2936
- 16 Candish L. Freitag M. Gensch T. Glorius F. Chem. Sci. 2017; 8: 3618
- 17 Affrose A. Suresh P. Azath IA. Pitchumani K. RSC Adv. 2015; 5: 27533
- 18 Yadav MR. Nagaoka M. Kashihara M. Zhong RL. Miyazaki T. Sakaki S. Nakao Y. J. Am. Chem. Soc. 2017; 139: 9423
- 19 Choudhury AR. Mukherjee S. Chem. Sci. 2016; 7: 6940
- 20 Zhu YW. Yi WB. Qian JL. Cai C. ChemCatChem 2014; 6: 733
- 21 delPozo J. Casares JA. Espinet P. Chem. Eur. J. 2016; 22: 4274
- 22 Pan C. Zhu J. Chen R. Yu JT. Org. Biomol. Chem. 2017; 15: 6467