Subscribe to RSS
DOI: 10.1055/s-0036-1591884
Substituent Effects of 2-Pyridones on Selective O-Arylation with Diaryliodonium Salts: Synthesis of 2-Aryloxypyridines under Transition-Metal-Free Conditions
Financial support from the ‘Overseas 100 Talents Program’ of Guangxi Higher Education, National Natural Science Foundation of China (21562005, 21602037), State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China (CMEMR2015-A05), and Natural Science Foundation of Guangxi (2015GXNSFCA139001, 2016GXNSFFA380005) are greatly appreciated.Publication History
Received: 03 December 2017
Accepted after revision: 08 December 2017
Publication Date:
24 January 2018 (online)

‡ X.-H. Li and A.-H. Ye contributed equally to this work
Abstract
An efficient transition-metal-free strategy to synthesize 2-aryloxypyridine derivatives has been developed by a selective O-arylation of 2-pyridones with diaryliodonium salts. The reaction was compatible with a series of functional groups for 2-pyridones and diaryliodonium salts such as halides, nitro, cyano, and ester groups. The substituents at the C6-position of 2-pyridones favored O-arylation products because of steric hindrance. The reaction was easily performed on a gram-scale and 6-chloro-2-pyridone was a good precursor to access various unsubstituted 2-aryloxypyridines by dehalogenation. A P2Y1 lead compound analogue could be prepared in good yield over two steps.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591884.
- Supporting Information
-
References
- 1a Caron S. Do NM. Sieser JE. Whritenour DC. Hill PD. Org. Process Res. Dev. 2009; 13: 324
- 1b Hu E. Kunz RK. Chen N. Rumfelt S. Siegmund A. Andrews K. Chmait S. Zhao S. Davis C. Chen H. Lester-Zeiner D. Ma J. Biorn C. Shi J. Porter A. Treanor J. Allen JR. J. Med. Chem. 2013; 56: 8781
- 1c Rowbottom MW. Bain G. Calderon I. Lasof T. Lonergan D. Lai A. Huang F. Darlington J. Prodanovich P. Santini AM. King CD. Goulet L. Shannon KE. Ma GL. Ngugen K. Mackenna DA. Evans JF. Hutchinson JH. J. Med. Chem. 2017; 60: 4403
- 1d Chao H. Turdi H. Herpin TF. Roberge JY. Liu Y. Schnur DM. Poss MA. Rehfuss R. Hua J. Wu Q. Price LA. Abell LM. Schumacher WA. Bostwick JS. Steinbacher TE. Stewart AB. Ogletree ML. Huang CS. Chang M. Cacace AM. Arcuri MJ. Celani D. Wexler RR. Lawrence RM. J. Med. Chem. 2013; 56: 1704
- 1e Duan H. Ning M. Chen X. Zou Q. Zhang L. Feng Y. Zhang L. Leng Y. Shen J. J. Med. Chem. 2012; 55: 10475
- 2a Takise R. Isshiki R. Muto K. Itami K. Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340
- 2b Hosseini-Sarvari M. Razmi Z. RSC Adv. 2014; 4: 44105
- 2c Cherng Y.-J. Tetrahedron 2002; 58: 887
- 2d Platon M. Cui L. Mom S. Richard P. Saeys M. Hierso J.-C. Adv. Synth. Catal. 2011; 353: 3403
- 2e Ghatak A. Khan S. Roy R. Bhar S. Tetrahedron Lett. 2014; 55: 7082
- 2f Zhang Q. Wang D. Wang X. Ding K. J Org. Chem. 2009; 74: 7187
- 2g D’Angelo ND. Peterson JJ. Booker SK. Fellows I. Dominguez C. Hungate R. Reider PJ. Kim T.-S. Tetrahedron Lett. 2006; 47: 5045
- 2h Lloung M. Loupy A. Marque S. Petit A. Heterocycles 2004; 63: 297
- 3a Zhang C. Sun P. J. Org. Chem. 2014; 79: 8457
- 3b Xu Y. Liu P. Li S.-L. Sun P. J. Org. Chem. 2015; 80: 1269
- 3c Chu J.-H. Lin P-S. Wu M.-J. Organometallics 2010; 29: 4058
- 3d Lou S.-J. Chen Q. Wang Y.-F. Xu D.-Q. Du X.-H. He J.-Q. Mao Y.-J. Xu Z.-Y. ACS Catal. 2015; 5: 2846
- 3e McAteer DC. Javed E. Huo L. Huo S. Org. Lett. 2017; 19: 1606
- 3f Kaida H. Goya T. Nishi Y. Hirano K. Satoh T. Miura M. Org. Lett. 2017; 19: 1236
- 4a Mederski WW. K. R. Lefort M. Germann M. Kux D. Tetrahedron 1999; 55: 12757
- 4b Lam PY. S. Clark CG. Sauber S. Adams J. Averill KM. Chan DM. T. Combs A. Synlett 2000; 674
- 4c Altman RA. Buchwald SL. Org. Lett. 2007; 9: 643
- 4d Li CS. Dixon DD. Tetrahedron Lett. 2004; 45: 4257
- 4e Chen T. Luo Y. Hu Y. Yang B. Lu W. Eur. J. Med. Chem. 2013; 64: 613
- 4f Crifar C. Petiot P. Ahmad T. Gagnon A. Chem. Eur. J. 2014; 20: 2755
- 4g Lam PY. S. Vincent G. Bonne D. Clark CG. Tetrahedron Lett. 2002; 43: 3091
- 5a Chen T. Huang Q. Luo Y. Hu Y. Lu W. Tetrahedron Lett. 2013; 54: 1401
- 5b Cristau H.-J. Cellier PP. Spindler J.-F. Taillefer M. Chem. Eur. J. 2004; 10: 5607
- 6a Merritt EA. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 6b Merritt EA. Olofsson B. Synthesis 2011; 517
- 6c Olofsson B. Top. Curr. Chem. 2015; 373: 135
- 6d Aradi K. Tóth BL. Tolnai GL. Novák Z. Synlett 2016; 27: 1456
- 6e Fañanás-Mastral M. Synthesis 2017; 49: 1905
- 6f Wang X. Studer A. Acc. Chem. Res. 2017; 50: 1712
- 7a Lindstedt E. Stridfeldt E. Olofsson B. Org. Lett. 2016; 18: 4234
- 7b Sasaki T. Miyagi K. Moriyama K. Togo H. Org. Lett. 2016; 18: 944
- 7c Sheng J. Su X. Cao C. Chen C. Org. Chem. Front. 2016; 3: 501
- 7d Seidl TL. Sundalam SK. McCullough B. Stuart DR. J. Org. Chem. 2016; 81: 1998
- 7e Mehra MK. Tantak MP. Kumar I. Kumar D. Synlett 2016; 27: 604
- 7f Bihari T. Baninszki B. Gonda Z. Kovacs S. Novák Z. Stirling A. J. Org. Chem. 2016; 81: 5417
- 7g Qi C. Guo T. Xiong W. Wang L. Jiang H. ChemistrySelect 2017; 2: 4691
- 7h Mehra MK. Tantak MP. Arun V. Kumar I. Kumar D. Org. Biomol. Chem. 2017; 15: 4956
- 7i Tinnis F. Stridfeldt E. Lundberg H. Adolfosson H. Olofsson B. Org. Lett. 2015; 17: 2688
- 7j Gonda Z. Novak Z. Chem. Eur. J. 2015; 21: 16801
- 7k Riedmueller S. Nachtsheim BJ. Synlett 2015; 26: 651
- 7l Gao HY. Xu QL. Keene C. Kürti L. Chem. Eur. J. 2014; 20: 8883
- 7m Ghosh R. Stridfeldt E. Olofsson B. Chem. Eur. J. 2014; 20: 8888
- 7n Li P. Cheng G. Zhang H. Xu X. Gao J. Cui X. J. Org. Chem. 2014; 79: 8156
- 7o Ghosh R. Olofsson B. Org. Lett. 2014; 16: 1830
- 7p Castro LC. M. Chatani N. Synthesis 2014; 46: 2312
- 7q Yang Y. Wu X. Han J. Mao S. Qian X. Wang L. Eur. J. Org. Chem. 2014; 6854
- 8 Jung S.-H. Sung D.-B. Park C.-H. Kim W.-S. J. Org. Chem. 2016; 81: 7717
- 9a Jiao Y.-X. Ma X.-P. Su G.-F. Mo D.-L. Synthesis 2017; 49: 933
- 9b Tabolin AA. Ioffe SL. Chem. Rev. 2014; 114: 5426
- 9c Bolotin DS. Bokach NA. Demakova MY. Kukushkin VY. Chem. Rev. 2017; 117: 13039
- 10a Ma X.-P. Shi W.-M. Mo X.-L. Li X.-H. Li L.-G. Pan C.-X. Chen B. Su G.-F. Mo D.-L. J. Org. Chem. 2015; 80: 10098
- 10b Shi W.-M. Ma X.-P. Pan C.-X. Su G.-F. Mo D.-L. J. Org. Chem. 2015; 80: 11175
- 10c Li X.-H. Li L.-G. Mo X.-L. Mo D.-L. Synth. Commun. 2016; 46: 963
- 10d Wang Z.-X. Shi W.-M. Bi H.-Y. Li X.-H. Su G.-F. Mo D.-L. J. Org. Chem. 2016; 81: 8014
- 10e Wu S.-Y. Ma X.-P. Liang C. Mo D.-L. J. Org. Chem. 2017; 82: 3232
- 10f Shi W.-M. Li X.-H. Liang C. Mo D.-L. Adv. Synth. Catal. 2017; 359: 4129
- 11a Bordwell FG. Bartmess JE. Hautala JA. J. Org. Chem. 1978; 43: 3095
- 11b Olmstead WM. Margolin Z. Bordwell FG. J. Org. Chem. 1980; 45: 3295
- 11c Bordwell FG. Drucker GE. Fried HE. J. Org. Chem. 1981; 46: 632
- 11d Bordwell FG. Ji GZ. J. Am. Chem. Soc. 1991; 113: 8398
- 12a Dosanjh A. Eur. J. Pharmacol. 2006; 536: 219
- 12b du Bois RM. Nat. Rev. Drug Discovery 2010; 9: 129
- 12c Richeldi L. Yasothan U. Kirkpatrick P. Nat. Rev. Drug Discovery 2011; 10: 489
- 13 Magee TV. Brown MF. Starr JT. Ackley DC. Abramite JA. Aubrecht J. Butler A. Crandon JL. Dib-Hajj F. Flanagan ME. Granskog K. Hardink JR. Huband MD. Irvine R. Kuhn M. Leach KL. Li B. Lin J. Luke DR. Macvane SH. Miller AA. McCurdy S. McKim JM. Jr. Nicolau DP. Nguyen T.-T. Noe MC. O’Donnell JP. Seibel SB. Shen Y. Stepan AF. Tomaras AP. Wilga PC. Zhang L. Xu J. Chen JM. J. Med. Chem. 2013; 56: 5079
- 14 For DFT calculations about the tautomers of 2-pyridone and 2-hydroxypyridine, see: Michelson AZ. Petronico A. Lee JK. J. Org. Chem. 2012; 77: 1623
- 15 For reductive elimination or 1,2-aryl migrations of iodonium salts, see: Malmgren J. Santoro S. Jalajian N. Himo F. Olofsson B. Chem. Eur. J. 2013; 19: 10334
- 16a Bielawski M. Zhu M. Olofsson B. Adv. Synth. Catal. 2007; 349: 2610
- 16b Bielawski M. Olofsson B. Chem. Commun. 2007; 2521
- 17 For the dehalogenation procedure, see: Nohara A. Ishiguro T. Ukawa K. Sugihara H. Maki Y. Sanno Y. J. Med. Chem. 1985; 28: 559
- 18 Janssens R. Communi D. Pirotton S. Samson M. Parmentier M. Boeynaems JM. Biochem. Biophys. Res. Commun. 1996; 221: 588
- 19 Lv X. Bao W. J. Org. Chem. 2007; 72: 3863
- 20 Li J. Yang Y. Wang Z. Feng B. You J. Org. Lett. 2017; 19: 3083
- 21 Sugahara M. Ukita T. Chem. Pharm. Bull. 1997; 45: 719
- 22 Yang Y. Huang H. Wu L. Liang Y. Org. Biomol. Chem. 2014; 12: 5351
- 23 Wawzonek S. Van Truong T. J. Heterocycl. Chem. 1988; 25: 381
- 24 Li Y. Xie F. Li X. J. Org. Chem. 2016; 81: 715
- 25 Corte JR. Fang T. Pinto DJ. P. Han W. Hu Z. Jiang X.-J. Li Y.-L. Gauuan JF. Hadden M. Orton D. Rendina AR. Luettgen JM. Bioorg. Med. Chem. Lett. 2008; 18: 2845
- 26 Krug M. Erlenkamp G. Sippl W. Schächtele C. Totzke F. Hilgeroth A. Bioorg. Med. Chem. Lett. 2010; 20: 6915
- 27 Liu Q. Lu Z. Ren W. Shen K. Wang Y. Xu Q. Chin. J. Chem. 2013; 31: 764
- 28 Stocks MJ. Barber S. Ford R. Leroux F. St-Gallay S. Teague S. Xue Y. Bioorg. Med. Chem. Lett. 2005; 15: 3459
- 29 Kuzuya M. Noguchi A. Kamiya S. Okuda T. Chem. Pharm. Bull. 1985; 33: 2313
- 30 Guan A. Liu C. Chen W. Yang F. Xie Y. Zhang J. Li Z. Wang M. J. Agric. Food Chem. 2017; 65: 1272
- 31 Sheehan JC. Daves GD. Jr. J. Org. Chem. 1965; 30: 3247
- 32 Chan L. McNally A. Toh QY. Mendoza A. Gaunt MJ. Chem. Sci. 2015; 6: 1277
- 33 Kinuta H. Tobisu M. Chatani N. J. Am. Chem. Soc. 2015; 137: 1593
- 34 Hartshorn CM. Steel PJ. Angew. Chem. Int. Ed. 1996; 35: 2655
For selected examples for preparation of 2-aryloxypyridines, see:
For selected examples for modification of 2-aryloxypyridines, see:
For selected examples of N-arylation of 2-pyridones, see:
For selected examples of O-arylation of 2-pyridones, see:
For some recent reviews for diaryliodonium salts, see:
For selected examples, see:
For recent reviews on compounds containing an N–O bond, see:
For some examples of arylation of N−O bond by diaryliodonium salts in our group, see:
For pK a data, see: