Synthesis 2018; 50(08): 1640-1650
DOI: 10.1055/s-0036-1591895
paper
© Georg Thieme Verlag Stuttgart · New York

Improved Synthesis of Glucosinolates

Yi Wee Lim
Division of Organic Chemistry, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Biopolis 138665, Singapore   Email: russell_hewitt@ices.a-star.edu.sg
,
Michelle Jui Hsien Ong
Division of Organic Chemistry, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Biopolis 138665, Singapore   Email: russell_hewitt@ices.a-star.edu.sg
,
Division of Organic Chemistry, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Biopolis 138665, Singapore   Email: russell_hewitt@ices.a-star.edu.sg
› Author Affiliations
This work was supported by the Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (ICES/14-3E5A02 and ICES/15-1E5A06).
Further Information

Publication History

Received: 27 October 2017

Accepted: 15 December 2017

Publication Date:
24 January 2018 (online)


Abstract

Herein we describe an improved synthesis of glucosinolates, in which the quantity and cost of materials have been reduced by approximately an order of magnitude compared to typical literature procedures. This allowed us to produce multiple glucosinolates in 10–25 gram batches using vessel sizes no larger than 0.5 litres.

Supporting Information

 
  • References

  • 1 Fahey JW. Zalcmann AT. Talalay P. Phytochemistry 2001; 56: 5
  • 2 Bennett RN. Mellon FA. Kroon PA. J. Agric. Food Chem. 2004; 52: 428
  • 3 Halkier BA. Gershenzon J. Annu. Rev. Plant Biol. 2006; 57: 303
  • 4 Clarke DB. Anal. Methods 2010; 2: 310
  • 5 Hanschen FA. Lamy E. Schreiner M. Rohn S. Angew. Chem. Int. Ed. 2014; 53: 11430
  • 6 Del Carpio DP. Basnet RK. Arends A. Lin K. De Vos RC. H. Muth D. Kodde J. Boutilier K. Bucher J. Wang X. Jansen R. Bonnema G. PLoS One 2014; 9: e107123
  • 7 Dinkova-Kostova AT. Kostov RV. Trends Mol. Med. 2012; 18: 337
  • 8 Fahey JW. Zhang Y. Talalay P. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 10367
  • 9 Benn MH. Can. J. Chem. 1963; 41: 2836
  • 10 Gil V. MacLeod AJ. Tetrahedron 1980; 36: 779
  • 11 Abramski W. Chmielewski M. J. Carbohydr. Chem. 1996; 15: 109
  • 12 Rollin P. Tatibouët A. C. R. Chim. 2011; 14: 194
  • 13 Zhang Q. Lebl T. Kulczynska A. Botting NP. Tetrahedron 2009; 65: 4871
  • 14 Cerniauskaite D. Rousseau J. Sackus A. Rollin P. Tatibouët A. Eur. J. Org. Chem. 2011; 2293
  • 15 Vo QV. Trenerry C. Rochfort S. Wadeson J. Leyton C. Hughes AB. Bioorg. Med. Chem. 2013; 21: 5945
  • 16 Vo QV. Trenerry C. Rochfort S. Hughes AB. Tetrahedron 2013; 69: 8731
  • 17 Roschanger F. Sheldon RA. Senanayake CH. Green Chem. 2015; 17: 752
  • 18 Kartha KP. R. Jennings HJ. J. Carbohydr. Chem. 1990; 9: 777
  • 19 Shull BK. Wu Z. Koreeda M. J. Carbohydr. Chem. 1996; 15: 955
  • 20 Adinolfi M. Capasso D. Di Gaetano S. Iadonisi A. Leone L. Pastore A. Org. Biomol. Chem. 2011; 9: 6278
  • 21 Belen’kii LI. Nitrile Oxides . In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis . Feuer H. John Wiley & Sons, Inc; Hoboken: 2007. 2nd ed. [Online], Chap. 1, 1-127 ; http://onlinelibrary.wiley.com/book/10.1002/ 9780470191552 (accessed January 11, 2018)
  • 22 Hansen EC. Levent M. Connolly TJ. Org. Process Res. Dev. 2010; 14: 574
  • 23 Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 1613
  • 24 Prat D. Wells A. Hayler J. Sneddon H. McElroy CR. Abou-Shehada S. Dunn PJ. Green Chem. 2016; 18: 288
  • 25 Alder CM. Hayler J. Henderson RK. Redman AM. Shukla L. Shuster LE. Sneddon H. Green Chem. 2016; 18: 3879
  • 26 Ferreira-Silva B. Lavandera I. Kern A. Faber K. Kroutil W. Tetrahedron 2010; 66: 3410
  • 27 Hawkes GE. Herwig K. Roberts JD. J. Org. Chem. 1974; 39: 1017
  • 28 Elfarra AA. Yeh H.-M. Hanna PE. J. Med. Chem. 1982; 25: 1189
  • 29 Wertz S. Studer A. Helv. Chim. Acta 2012; 95: 1758
  • 30 Yukawa Y. Sakai M. Suzuki S. Bull. Chem. Soc. Jpn. 1966; 39: 2266
  • 31 Suzuki K. Watanabe T. Murahashi S.-I. J. Org. Chem. 2013; 78: 2301
  • 32 Floyd N. Balakumar Vijayakrishnan B. Koeppe JR. Davis BG. Angew. Chem. Int. Ed. 2009; 48: 7798
  • 33 Davidson NE. Rutherford TJ. Botting NP. Carbohydr. Res. 2001; 330: 295