Synthesis 2018; 50(06): 1246-1258
DOI: 10.1055/s-0036-1591899
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Optically Active 15-epi-9,14-Methylene Lipoxin A4

Adile Duymaz
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Jochen Körber
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Carolin Hofmann
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Dorothea Gerlach
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
,
Udo Nubbemeyer*
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: nubbemey@uni-mainz.de
› Author Affiliations
The authors thank FU Berlin and JGU Mainz for financial support
Further Information

Publication History

Received: 21 November 2017

Accepted after revision: 26 December 2017

Publication Date:
21 February 2018 (online)


Dedicated to Prof. Dr. Werner Skuballa on the occasion of his 75th birthday

Abstract

The synthesis of lipoxin A4 and B4 analogues (LXA4, LXB4) to gain access to stabilized inflammation resolving compounds is an important field of research. Starting from known structural requirements of the natural compounds displaying biological activity and a broad investigation of their rapid metabolism, various LXA4 derivatives have been developed and tested. Focusing on variation and stabilization of the conjugated E,E,Z,E C7–C14 tetraene moiety of natural LXA4, a methylene bridge introduced between C9 and C14 might suppress any Z/E isomerization of the C11–C12 olefin. Intending to enable at least known structure variations in connection with the C1–C7 and the C15–C20 fragments, a convergent total synthesis starting from a known cycloheptatriene is developed. The C1–C8 building blocks are generated via six-step ex-chiral pool sequences starting from 2-deoxy-d-ribose delivering two 5,6-dihydroxy carboxylic acid derivatives with C7 aldehyde functions. The synthesis of the C8–C21 building block starts from a known cycloheptatriene 1-carbonester (C8–C14, C21) and hexanoyl chloride (C15–C20). After Friedel–Crafts-type coupling, the defined configuration of the C15 OH group is introduced via enantioselective reduction of the ketone precursor. Following an additional four steps, an aryl sulfone C9–C21 building block is completed ready for a key Julia–Kocienski olefination with the C1–C7 compounds. Finally, removal of the protecting groups completes the synthesis of the target optically active 9,14-methylene LXA4 methyl ester.

Supporting Information

 
  • References

    • 1a Borgeat P. Naccache PH. Clin. Biochem. 1990; 23: 459
    • 1b Libby P. Sci. Am. 2002; 286: 46
    • 1c Campbell NA. Reece JB. Biology . 6th ed. Benjamin Cummings; San Francisco: 2001: 901
    • 2a Chandrasekharan JA. Sharma-Walia N. J. Inflammation Res. 2015; 8: 181
    • 2b Bäck M. Powell WS. Dahlén S.-E. Drazen JM. Evans JF. Serhan CN. Shimizu T. Yokomizu T. Rovati GE. Br. J. Pharmacol. 2014; 171: 3551
    • 2c Maderna P. Godson C. Br. J. Pharmacol. 2009; 158: 947
    • 3a Serhan CN. Hamberg M. Samuelsson B. Biochem. Biophys. Res. Commun. 1984; 118: 943
    • 3b Serhan CN. Hamberg M. Samuelsson B. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 5335
    • 3c Serhan CN. Nicolaou KC. Webber SE. Veale CA. Dahlén S.-E. Puustinen TJ. Samuelsson B. J. Biol. Chem. 1986; 261: 16340
    • 3d Serhan CN. Hamberg M. Samuelsson B. Morris J. Wishka DG. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 1983
    • 4a Hamberg M. Samuelsson B. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 3400
    • 4b Serhan CN. Prostaglandins Leukotrienes Essent. Fatty Acids 2005; 73: 141
    • 4c Fitzsimmons BJ. Adams J. Evans JF. Leblanc Y. Rokach J. J. Biol. Chem. 1985; 260: 13008
  • 5 Claria J. Serhan CN. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 9475
    • 6a Clish B. Levy D. Chiang N. J. Biol. Chem. 2000; 275: 25372
    • 6b Chiang N. Fierro I. Gronert K. Serhan SN. J. Exp. Med. 2000; 191: 1197
    • 7a Serhan CN. Fiore S. Brezinski DA. Lynch S. Biochemistry 1993; 32: 6313
    • 7b Maddox J. Serhan CN. J. Exp. Med. 1996; 183: 137
    • 7c Sumimoto H. Isobe R. Mizukami Y. Minakami S. FEBS Lett. 1993; 315: 205
    • 7d Mizukami Y. Sumimoto H. Isobe R. Minakami S. Biochim. Biophys. Acta 1993; 1168: 87
    • 8a Nicolaou KC. Ramphal JY. Petasis NA. Serhan CN. Angew. Chem., Int. Ed. Engl. 1991; 30: 1100; Angew. Chem. 1991, 103, 1119
    • 8b Petasis NA. Akritopoulou-Zanze I. Fokin VV. Bernasconi G. Keledjian R. Yang R. Uddin J. Nagulapalli KC. Serhan CN. Prostaglandins Leukotrienes Essent. Fatty Acids 2005; 73: 301
    • 8c Duffy CD. Guiry PJ. Med. Chem. Commun. 2010; 1: 249
    • 9a Clish CB. O’Brien JA. Gronert K. Stahl GL. Petasis NA. Serhan CN. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 8247
    • 9b Serhan CN. EP1201639, A2, 2002
    • 9c Phillips ED. Chang H.-F. Holmquist CR. McCauley JP. Bioorg. Med. Chem. Lett. 2003; 13: 3223
    • 10a O’Sullivan TP. Vallin KS. A. Shah ST. A. Fakhry J. Maderna P. Scannell M. Sampaio AL. F. Perretti M. Godson C. Guiry PJ. J. Med. Chem. 2007; 50: 5894
    • 10b Duffy CD. Maderna P. McCarthy C. Loscher CE. Godson C. Guiry PJ. ChemMedChem 2010; 5: 517
    • 10c Haberlin GG. McCarthy C. Doran R. Loscher CE. Guiry PJ. Tetrahedron 2014; 70: 6859
    • 11a Petasis NA. Keledjian R. Sun Y.-P. Nagulapally KC. Tjonahen E. Yang R. Serhan CN. Bioorg. Med. Chem. Lett. 2008; 18: 1382
    • 11b Nokami J. Furukawa A. Okuda Y. Hazato A. Kurozumi S. Tetrahedron Lett. 1998; 39: 1005
  • 12 Guilford WJ. Bauman JG. Skuballa W. Bauer S. Wie GP. Davey D. Schaefer C. Mallari C. Terkelsen J. Tseng J.-L. Shen J. Subramanyam B. Schottelius AJ. Parkinson JF. J. Med. Chem. 2004; 47: 2157
    • 13a Brennan E. Wang B. McClelland A. Mohan M. Marai M. Beuscart O. Derouiche S. Gray S. Pickering R. Tikellis C. de Gaetano M. Barry M. Belton O. Ali-Shah ST. Guiry PJ. Jandeleit-Dahm KA. M. Cooper ME. Godson C. Kantharidis P. Diabetes 2017; 66: 2266
    • 13b Börgeson E. Johnson AM. F. Lee YS. Till A. Syed GH. Ali-Shah ST. Guiry PJ. Dalli J. Colas RA. Serhan CN. Sharma K. Godson C. Cell Metabolism 2015; 22: 1
    • 13c Brennan EP. Nolan K. Börgeson E. Gouth OS. Docherty NG. Higgins DF. Murthy M. Ali-Shah ST. Guiry PJ. Savage AD. Maxwell AP. Martin F. Godson C. J. Am. Soc. Nephrol. 2013; 24: 627
    • 13d Wan M. Godson C. Guiry PJ. Agerberh B. Haeggeström J. FASEB 2011; 25: 1697
    • 13e Börgeson E. Docherty NG. Murphy M. Rodgers K. Ryan A. O’Sullivan T. Guiry PJ. Goldschmeding R. Higgins DF. Godson C. FASEB 2011; 25: 2967
  • 14 Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002; 2563
    • 15a Sasaki M. Ishikawa M. Fuwa H. Tachibana K. Tetrahedron 2002; 58: 1889
    • 15b Corey EJ. Marfat A. Munroe J. Kim KS. Hopkins PB. Brion F. Tetrahedron Lett. 1981; 22: 1077
    • 15c Rodriguez A. Nomen M. Spur BW. Godfroid JJ. Lee TH. Tetrahedron Lett. 2000; 41: 823
    • 16a Vogel E. Deger HM. Sombroek J. Palm J. Wagner A. Lex J. Angew. Chem. 1980; 92: 43
    • 16b Asao T. Kuroda S. Kato K. Chem. Lett. 1978; 41
  • 17 Hovinen J. Salo H. J. Chem. Soc., Perkin Trans. 1 1997; 3017
  • 18 Corey EJ. Venkatesvarlu A. J. Am. Chem. Soc. 1972; 94: 6190
    • 19a Kohli V. Bloecker H. Koester H. Tetrahedron Lett. 1980; 21: 2683
    • 19b Lampe TF. S. Hoffmann HM. R. Tetrahedron Lett. 1996; 37: 7695
    • 19c Sabitha G. Venkata Reddy E. Swapna R. Mallikarjun Reddy N. Yadav JS. Synlett 2004; 1276
    • 19d Jones GB. Hynd G. Wright JM. Sharma A. J. Org. Chem. 2000; 65: 263
  • 20 Nicolaou KC. Veale CA. Webber SE. Katerinopoulos H. J. Am. Chem. Soc. 1985; 107: 7515
    • 21a Paquette LA. Kang HJ. Sup Ra C. J. Am. Chem. Soc. 1992; 114: 7387
    • 21b von Bredow K. Helferich G. Weis CD. Helv. Chim. Acta 1972; 55: 553
    • 21c Takeshita H. Mori A. Ito S. Bull. Chem. Soc. Jpn. 1974; 47: 1767
    • 21d Higuchi H. Kiyoto S. Sakon C. Hiraiwa N. Asano K. Kondo S. Ojima S. Yamamoto G. Bull. Chem. Soc. Jpn. 1995; 68: 3519
    • 21e Higuchi H. Kiyoto S. Sakon C. Hiraiwa N. Asano K. Kondo S. Ojima S. Yamamoto G. Chem. Lett. 1994; 2291
    • 21f Okazaki R. Ooka M. Tokitoh N. Inamoto N. J. Org. Chem. 1985; 50: 180
    • 21g Mueller P. Schaller J.-P. Helv. Chim. Acta 1989; 72: 1608
    • 21h Vogel E. Puettmann W. Duchatsch W. Schieb T. Schmickler H. Lex J. Angew. Chem. 1986; 98: 727
  • 22 In addition, methyl ester cleavage resulting in the corresponding keto carboxylic acid was found as a side reaction. However, reinstallation of the methyl ester was successful upon treatment of the crude product with diazomethane in ether and running the AcCl/MeOH ester formation as described for the synthesis of 8.
  • 23 See the Supporting Information for HPLC data and further information.
  • 24 Brown HC. Ramachandan PV. J. Org. Chem. 1989; 54: 159
    • 25a Corey EJ. Bakshi RK. Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
    • 25b Corey EJ. Helal CJ. Angew. Chem. 1998; 110: 2092
    • 25c Mathre DJ. Jones TK. Xavier LC. Blacklock TJ. Reamer RA. Mohan JJ. Jones ET. T. Hoogsteen K. Baum MW. Grabowsli EJ. J. J. Org. Chem. 1991; 56: 751
    • 25d Mathre DJ. Thompson AS. Douglas AW. Hoogsteen K. Carroll JD. Corley EG. Grabowsli EJ. J. J. Org. Chem. 1993; 58: 2880
    • 25e Xavier LC. Mohan JJ. Mathre DJ. Thompson AS. Carroll JD. Corley EG. Desmond R. Org. Synth. Coll. Vol. 9 1998; 676
  • 26 Mitsunobu O. Synthesis 1981; 1
  • 28 Application of the original Swern reaction conditions delivered some chloride VIII as a substitution side product. See the Supporting Information for data.
  • 29 Treatment of carbinol 11 with various acids caused rapid destruction of the material. In several runs olefin IX was isolated as a degradation product. See the Supporting Information for data.
  • 30 Treatment of carbinol 11 with activated mandelic acid under standard basic conditions afforded O-pivaloylmandelates XI and XII. See the Supporting Information for data. For a reference, see: White RE. Miller JP. Favreau LV. Bhattachararyya A. J. Am. Chem. Soc. 1986; 108: 6024
    • 31a Dale JA. Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
    • 31b Sullivan GR. Dale JA. Mosher HS. J. Org. Chem. 1973; 38: 2143
    • 32a Ohtani I. Kusumi T. Kashman Y. Kakisawa H. J. Am. Chem. Soc. 1991; 113: 4092
    • 32b Hoye TR. Jeffrey CS. Shao F. Nat. Protoc. 2007; 2: 2451
    • 32c Seco JM. Quinoa E. Riguera R. Tetrahedron: Asymmetry 2001; 12: 2915
  • 33 See the Supporting Information for 1H NMR spectra of both diastereomers (separated and overlaid).
  • 34 Winterfeldt E. Synthesis 1975; 617
  • 35 Sheddan NA. Mulzer J. Org. Lett. 2005; 7: 5115
    • 37a Baudin JB. Hareau G. Julia SA. Lorne R. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 856
    • 37b Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 336
  • 38 See the Supporting Information for the cycloheptatrienyl tetrazole degradation product XIV.
  • 39 Starting from scalemic sulfone (R)-16 (70% ee), Julia Kocienski olefinations with aldehydes 5 and 6, respectively, led to mixtures of diastereomers 17 and 18. During the completion of the total synthesis minor diastereomers (S-15 configuration) had been separated via the column chromatographic isolations. Purification and characterization of the minor diastereomers gave no satisfactory data (low substance amounts).
  • 40 Optimization of the side-chain synthesis is envisaged after determination of the optimal reactants running the Julia–Kocienski olefination (5 + 16 or 6 + 16, respectively). Lactone II can be obtained from ester III upon heating for a prolonged reaction time; lactone 3 can be converted into ester 4 via Zemplén reaction with MeOH and TBS protection of the regenerated hydroxy group.