Synlett 2018; 29(08): 1065-1070
DOI: 10.1055/s-0036-1591943
letter
© Georg Thieme Verlag Stuttgart · New York

Visible Light Promotes Decyanation Esterification Reaction of β-Ketonitriles with Dioxygen and Alcohols to α-Ketoesters

Chen Xu
College of Chemistry and molecular engineering, Nanjing Tech University, 30 Puzhu South Road, Jiangsu, Nanjing, 211816, P. R. of China   Email: guocheng@njtech.edu.cn
,
Nan-Nan Zhang
College of Chemistry and molecular engineering, Nanjing Tech University, 30 Puzhu South Road, Jiangsu, Nanjing, 211816, P. R. of China   Email: guocheng@njtech.edu.cn
,
Xiao-ji Li
College of Chemistry and molecular engineering, Nanjing Tech University, 30 Puzhu South Road, Jiangsu, Nanjing, 211816, P. R. of China   Email: guocheng@njtech.edu.cn
,
Yan-qin Ge
College of Chemistry and molecular engineering, Nanjing Tech University, 30 Puzhu South Road, Jiangsu, Nanjing, 211816, P. R. of China   Email: guocheng@njtech.edu.cn
,
Pin-hui Diao
College of Chemistry and molecular engineering, Nanjing Tech University, 30 Puzhu South Road, Jiangsu, Nanjing, 211816, P. R. of China   Email: guocheng@njtech.edu.cn
,
Cheng Guo*
College of Chemistry and molecular engineering, Nanjing Tech University, 30 Puzhu South Road, Jiangsu, Nanjing, 211816, P. R. of China   Email: guocheng@njtech.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 11 December 2017

Accepted after revision: 29 January 2018

Publication Date:
26 February 2018 (online)


Abstract

A green and mild method has been developed for the conversion of β-ketonitriles into α-ketoesters under catalyst-free conditions. A plausible mechanism is that visible light promotes singlet oxygen generation to form the products through oxidative C–H bond functionalization and C–C σ-bond cleavage.

Supporting Information

 
  • References and Notes

    • 1a Uyanik M. Fukatsu R. Ishihara K. Chem. Asian J. 2010; 5: 456
    • 1b Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 1c Wei W. Liu C. Yang D. Wen J. You J. Suo Y. Wang H. Chem. Commun. 2013; 10239
    • 2a Zhang S. Zhan M. Luo Q. Zhanga W.-X. Xi Z. Chem. Commun. 2013; 6146
    • 2b Lancefield CS. Ojo OS. Tran F. Westwood NJ. Angew. Chem. Int. Ed. 2015; 54: 258
    • 3a Ocain TD. Rich DH. J. Med. Chem. 1992; 35: 451
    • 3b Chen YH. Zhang YH. Zhang HJ. Liu DZ. Gu M. Li JY. Wu F. Zhu XZ. Li J. Nan FJ. J. Med. Chem. 2006; 49: 1613
    • 3c Nie Y. Xiao R. Xu Y. Montelione GT. Org. Biomol. Chem. 2011; 9: 4070
    • 3d Aoki Y. Tanimoto S. Takahashi D. Toshima K. Chem. Commun. 2013; 1169
    • 4a Li W. Liu X. Tan F. Hao X. Zheng J. Lin L. Feng X. Cheminform 2013; 52: 10883
    • 4b Jiang J. Liu H. Lu C.-D. Xu Y.-J. Org. Lett. 2016; 18: 880
  • 5 Stergiou A. Bariotaki A. Kalaitzakis D. Smonou I. J. Org. Chem. 2013; 78: 7268
  • 6 Zhang C. Feng P. Jiao N. J. Am. Chem. Soc. 2013; 135: 15257
  • 7 Zhang C. Jiao N. Org. Chem. Front. 2014; 1: 109
  • 8 Xu X. Ding W. Lin Y. Song Q. Org. Lett. 2015; 17: 516
  • 9 Xie Y. Liu J. Huang Y. Yao L. Tetrahedron Lett. 2015; 56: 3793
  • 10 Schweitzer C. Schmidt R. Chem. Rev. 2003; 103: 1685
  • 11 Wang H. Yang X. Shao W. Chen S. Xie J. Zhang X. Wang J. Xie Y. J. Am. Chem. Soc. 2015; 137: 11376
  • 12 Klaper M. Linker T. J. Am. Chem. Soc. 2015; 137: 13744
  • 13 Xu WT. Huang B. Dai JJ. Xu J. Xu HJ. Org. Lett. 2016; 18: 3114