Synlett 2018; 29(08): 993-998
DOI: 10.1055/s-0036-1591945
synpacts
© Georg Thieme Verlag Stuttgart · New York

Annulation Reactions for Conjugated Ladder-Type Oligomers

Alexander J. Kalin
a  Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843-3255, USA   Email: fang@chem.tamu.edu
,
Jongbok Lee
a  Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843-3255, USA   Email: fang@chem.tamu.edu
,
Lei Fang*
a  Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843-3255, USA   Email: fang@chem.tamu.edu
b  Department of Materials Science and Engineering, Texas A&M University, 3003 TAMU, College Station, TX 77843-3003, USA
› Author Affiliations
The authors acknowledge the Welch Foundation (A-1898) for financial support of this work.
Further Information

Publication History

Received: 11 January 2018

Accepted after revision: 05 February 2018

Publication Date:
27 February 2018 (online)

Abstract

Conjugated ladder-type oligomers are a class of important functional organic materials. They possess intriguing properties stemming from their fully fused aromatic backbones. The construction of the ladder-type backbone relies on a ‘ladderization’ step, which may be accomplished through either kinetically or thermodynamically controlled annulation reactions. The attributes of these reactions are discussed, with relevant recent examples. The development of these reactions is key to continued advances and innovation in the field of organic conjugated materials.

1 Introduction

2 Kinetic Annulations

3 Thermodynamic Annulations

4 Future Outlooks and Conclusion

 
  • References

  • 1 Scherf U. J. Mater. Chem. 1999; 9: 1853
  • 2 Lee J. Kalin AJ. Yuan T. Al-Hashimi M. Fang L. Chem. Sci. 2017; 8: 2503
  • 3 Teo YC. Lai HW. H. Xia Y. Chem. Eur. J. 2017; 23: 14101
  • 4 Guo Y. Li Y. Awartani O. Han H. Zhao J. Ade H. Yan H. Zhao D. Adv. Mater. 2017; 29: 1700309
  • 5 Wang Y. Yan Z. Guo H. Uddin MA. Ling S. Zhou X. Su H. Dai J. Woo HY. Guo X. Angew. Chem. Int. Ed. 2017; 56: 15304
  • 6 Grimsdale AC. Müllen K. Macromol. Rapid Commun. 2007; 28: 1676
  • 7 Wang L. Cai D. Yin Z. Tang C. Chen S.-C. Zheng Q. Polym. Chem. 2014; 5: 6847
  • 8 Yang M. Lau T.-K. Xiao S. Gao J. Wang W. Lu X. Zhang S. Wu J. Zhan C. You W. ACS Appl. Mater. Interfaces 2017; 9: 35159
  • 9 Bunz UH. F. Acc. Chem. Res. 2015; 48: 1676
  • 10 Endres AH. Schaffroth M. Paulus F. Reiss H. Wadepohl H. Rominger F. Krämer R. Bunz UH. F. J. Am. Chem. Soc. 2016; 138: 1792
  • 11 Krüger J. García F. Eisenhut F. Skidin D. Alonso JM. Guitián E. Pérez D. Cuniberti G. Moresco F. Peña D. Angew. Chem. Int. Ed. 2017; 56: 11945
  • 12 Xie J. Rui X. Gu P. Wu J. Xu ZJ. Yan Q. Zhang Q. ACS Appl. Mater. Interfaces 2016; 8: 16932
  • 13 Gu P.-Y. Zhou F. Gao J. Li G. Wang C. Xu Q.-F. Zhang Q. Lu J.-M. J. Am. Chem. Soc. 2013; 135: 14086
  • 14 Grimme J. Kreyenschmidt M. Uckert F. Müllen K. Scherf U. Adv. Mater. 1995; 7: 292
  • 15 Electronic Materials: The Oligomer Approach . Müllen K. Wegner G. Wiley-VCH; Weinheim: 1998
  • 16 Lawrence J. Goto E. Ren JM. McDearmon B. Kim DS. Ochiai Y. Clark PG. Laitar D. Higashihara T. Hawker CJ. J. Am. Chem. Soc. 2017; 139: 13735
  • 17 Chen L. Hernandez Y. Feng X. Müllen K. Angew. Chem. Int. Ed. 2012; 51: 7640
  • 18 Narita A. Wang X.-Y. Feng X. Mullen K. Chem. Soc. Rev. 2015; 44: 6616
  • 19 Jacobse PH. Moret M.-E. Klein Gebbink RJ. M. Swart I. Synlett 2017; 28: 2509
  • 20 Tsuda A. Osuka A. Science 2001; 293: 79
  • 21 Wu J. Pisula W. Müllen K. Chem. Rev. 2007; 107: 718
  • 22 Roznyatovskiy VV. Lee C.-H. Sessler JL. Chem. Soc. Rev. 2013; 42: 1921
  • 23 Stępień M. Gońka E. Żyła M. Sprutta N. Chem. Rev. 2017; 117: 3479
  • 24 Grimme J. Scherf U. Macromol. Chem. Phys. 1996; 197: 2297
  • 25 Xu C. Wakamiya A. Yamaguchi S. J. Am. Chem. Soc. 2005; 127: 1638
  • 26 Vaid TP. Easton ME. Rogers RD. Synth. Met. 2017; 231: 44
  • 27 Bouchard J. Wakim S. Leclerc M. J. Org. Chem. 2004; 69: 5705
  • 28 Zheng T. Cai Z. Ho-Wu R. Yau SH. Shaparov V. Goodson T. Yu L. J. Am. Chem. Soc. 2016; 138: 868
  • 29 Sirringhaus H. Friend HR. Wang C. Leuninger J. Mullen K. J. Mater. Chem. 1999; 9: 2095
  • 30 Gao P. Feng X. Yang X. Enkelmann V. Baumgarten M. Müllen K. J. Org. Chem. 2008; 73: 9207
  • 31 Zhong Y. Kumar B. Oh S. Trinh MT. Wu Y. Elbert K. Li P. Zhu X. Xiao S. Ng F. Steigerwald ML. Nuckolls C. J. Am. Chem. Soc. 2014; 136: 8122
  • 32 Sisto TJ. Zhong Y. Zhang B. Trinh MT. Miyata K. Zhong X. Zhu XY. Steigerwald ML. Ng F. Nuckolls C. J. Am. Chem. Soc. 2017; 139: 5648
  • 33 Zhong Y. Sisto TJ. Zhang B. Miyata K. Zhu XY. Steigerwald ML. Ng F. Nuckolls C. J. Am. Chem. Soc. 2017; 139: 5644
  • 34 Cai Z. Vázquez RJ. Zhao D. Li L. Lo WY. Zhang N. Wu Q. Keller B. Eshun A. Abeyasinghe N. Banaszak-Holl H. Goodson T. Yu L. Chem. Mater. 2017; 29: 6726
  • 35 Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
  • 36 Mallory FB. Regan CK. Bohen JM. Mallory CW. Bohen AA. Carroll PJ. J. Org. Chem. 2015; 80: 8
  • 37 Mallory FB. Butler KE. Evans AC. Brondyke EJ. Mallory CW. Yang C. Ellenstein A. J. Am. Chem. Soc. 1997; 119: 2119
  • 38 Yang W. Chalifoux WA. Synlett 2017; 28: 625
  • 39 Goldfinger MB. Crawford KB. Swager TM. J. Am. Chem. Soc. 1997; 119: 4578
  • 40 Yang W. Monteiro JH. S. K. de Bettencourt-Dias A. Catalano VJ. Chalifoux WA. Angew. Chem. Int. Ed. 2016; 55: 10427
  • 41 Yang W. Monteiro JH. S. K. de Bettencourt-Dias A. Chalifoux WA. Can. J. Chem. 2016; 95: 341
  • 42 Wakim S. Bouchard J. Blouin N. Michaud A. Leclerc M. Org. Lett. 2004; 6: 3413
  • 43 Povie G. Segawa Y. Nishihara T. Miyauchi Y. Itami K. Science 2017; 356: 172
  • 44 Wetzel C. Brier E. Vogt A. Mishra A. Mena-Osteritz E. Bäuerle P. Angew. Chem. Int. Ed. 2015; 54: 12334
  • 45 Lee J. Rajeeva BB. Yuan T. Guo Z.-H. Al-Hashimi M. Zheng Y. Fang L. L. Chem. Sci. 2016; 7: 881
  • 46 Lee J. Kalin AJ. Wang C. Early JT. Al-Hashimi M. Fang L. Polym. Chem. 2018; DOI: DOI 10.1039/c7py02059g.
  • 47 Katz TJ. Rothchild R. J. Am. Chem. Soc. 1976; 98: 2519
  • 48 Iuliano A. Piccioli P. Fabbri D. Org. Lett. 2004; 6: 3711
  • 49 Bonifacio MC. Robertson CR. Jung J.-Y. King BT. J. Org. Chem. 2005; 70: 8522
  • 50 Wang Y. Guo H. Ling S. Arrechea-Marcos I. Wang Y. López Navarrete JT. Ortiz RP. Guo X. Angew. Chem. Int. Ed. 2017; 56: 9924
  • 51 Yao Y. Tour JM. Macromolecules 1999; 32: 2455
  • 52 Durban MM. Kazarinoff PD. Segawa Y. Luscombe CK. Macromolecules 2011; 44: 4721
  • 53 Lamba JJ. S. Tour JM. J. Am. Chem. Soc. 1994; 116: 11723
  • 54 Hollingsworth WR. Lee J. Fang L. Ayzner AL. ACS Energy Lett. 2017; 2: 2096
  • 55 Guo L. Li KF. Zhang X. Cheah KW. Wong MS. Angew. Chem. Int. Ed. 2016; 55: 10639
  • 56 Rissler J. Chem. Phys. Lett. 2004; 395: 92
  • 57 Meier H. Stalmach U. Kolshorn H. Acta Polym. 1997; 48: 379
  • 58 Grozema FC. van Duijnen PT. Berlin YA. Ratner MA. Siebbeles LD. A. J. Phys. Chem. B 2002; 106: 7791
  • 59 Lee J. Li H. Kalin AJ. Yuan T. Wang C. Olson T. Li H. Fang L. Angew. Chem. Int. Ed. 2017; 56: 13727
  • 60 Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
  • 61 Yamago S. Kayahara E. Iwamoto T. Chem. Rec. 2014; 14: 84
  • 62 Yamago S. Watanabe Y. Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
  • 63 Evans PJ. Darzi ER. Jasti R. Nat. Chem. 2014; 6: 404