Synlett 2018; 29(09): 1136-1151
DOI: 10.1055/s-0036-1591975
account
© Georg Thieme Verlag Stuttgart · New York

Artificial Macrocycles

a  University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands   Email: [email protected]
b  Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
,
a  University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands   Email: [email protected]
,
a  University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 10 January 2018

Accepted: 06 March 2018

Publication Date:
07 May 2018 (online)


Abstract

Artificial macrocycles recently became popular as a novel research field in drug discovery. As opposed to their natural twins, artificial macrocycles promise to have better control on synthesizability and control over their physicochemical properties resulting in druglike properties. Very few synthetic methods allow for the convergent, fast but diverse access to large macrocycles chemical space. One synthetic technology to access artificial macrocycles with potential biological activity, multicomponent reactions, is reviewed here, with a focus on our own work. We believe that synthetic chemists have to acquaint themselves more with structure and activity to leverage the design aspect of their daily work.

1 Introduction

2 Macrocycle Properties and Receptor Binding

3 Synthetic Approaches towards Artificial Macrocycles Using MCR

4 Design Rules for Membrane Crossing Macrocycles

5 Design Rules for Libraries of Macrocycles

6 Computational Macrocyclic Methods

7 Future View

 
  • References

    • 1a Driggers EM. Hale SP. Lee J. Terrett NK. Nat. Rev. Drug Discov. 2008; 7: 608
    • 1b Frost JR. Smith JM. Fasan R. Curr. Opin. Struct. Biol. 2013; 23: 571
    • 1c Gavenonis J. Sheneman BA. Siegert TR. Eshelman MR. Kritzer JA. Nat. Chem. Biol. 2014; 10: 716
    • 1d Heinis C. Nat. Chem. Biol. 2014; 10: 696
    • 1e Hunsdiecker H. Erlbach H. Chem. Ber. 1947; 80: 129
    • 1f Mäde V. Els-Heindl S. Beck-Sickinger AG. Beilstein J. Org. Chem. 2014; 10: 1197
    • 1g Marsault E. Peterson ML. J. Med. Chem. 2011; 54: 1961
    • 1h Masson G. Neuville L. Bughin C. Fayol A. Zhu J. Multicomponent Syntheses of Macrocycles . In Synthesis of Heterocycles via Multicomponent Reactions II . Vol. 25. Orru RV. A. Ruijter E. Springer; Berlin, Heidelberg: 2010: 1
    • 1i Villar EA. Beglov D. Chennamadhavuni S. Porco JA. Jr. Kozakov D. Vajda S. Whitty A. Nat. Chem. Biol. 2014; 10: 723
    • 1j Wessjohann L. Ruijter E. Garcia-Rivera D. Brandt W. Mol. Diversity 2005; 9: 171
    • 1k White CJ. Yudin AK. Nat. Chem. 2011; 3: 509
    • 1l Yudin AK. Chem. Sci. 2015; 6: 30
    • 1m Gartner ZJ. Tse BN. Grubina R. Doyon JB. Snyder TM. Liu DR. Science 2004; 305: 1601
    • 1n http://www.drugdesign.nl/publica-tions/macrocycle-database/�
    • 1o http://www.drugdesign.nl/wp- content/uploads/2018/04/1AY6.pdf�
  • 2 Dömling A. Holak TA. Angew. Chem. Int. Ed. 2014; 53: 2286
  • 3 Zak KM. Kitel R. Przetocka S. Golik P. Guzik K. Musielak B. Dömling A. Dubin G. Holak TA. Structure 2015; 23: 2341
  • 4 Kozakov D. Hall DR. Napoleon RL. Yueh C. Whitty A. Vajda S. J. Med. Chem. 2015; 58: 9063
  • 5 Wang W. Groves MR. Dömling A. MedChemComm 2018; 9: 22
  • 6 Kuhn B. Fuchs JE. Reutlinger M. Stahl M. Taylor NR. J. Chem. Inf. Model. 2011; 51: 3180
    • 7a Ziegler K. Eberle H. Ohlinger H. Eur. J. Org. Chem. 1933; 504: 94
    • 7b Ruggli P. Eur. J. Org. Chem. 1912; 392: 92
    • 8a Verdine GL. Hilinski GJ. Drug Discovery Today: Technol. 2012; 9: e41
    • 8b Connors WH. Hale SP. Terrett NK. Curr. Opin. Chem. Biol. 2015; 26: 42
    • 8c Smith JM. Frost JR. Fasan R. J. Org. Chem. 2013; 78: 3525
  • 9 Koopmanschap G. Ruijter E. Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
  • 10 Failli A. Immer H. Götz M. Can. J. Chem. 1979; 57: 3257
  • 11 Cristau P. Vors JP. Zhu JP. Org. Lett. 2001; 3: 4079
  • 12 Pirali T. Tron GC. Zhu JP. Org. Lett. 2006; 8: 4145
  • 13 Pirali T. Tron GC. Masson G. Zhu JP. Org. Lett. 2007; 9: 5275
  • 14 Vercillo OE. Andrade CK. Z. Wessjohann LA. Org. Lett. 2008; 10: 205
  • 15 Rivera DG. Wessjohann LA. J. Am. Chem. Soc. 2009; 131: 3721
    • 16a Hili R. Rai V. Yudin AK. J. Am. Chem. Soc. 2010; 132: 2889
    • 16b Zaretsky S. Scully CC. G. Lough AJ. Yudin AK. Chem. Eur. J. 2013; 19: 17668
  • 17 Ramazani A. Rezaei A. Org. Lett. 2010; 12: 2852
  • 18 Frost JR. Scully CC. G. Yudin AK. Nat. Chem. 2016; 8: 1105
  • 19 Vasco AV. Perez CS. Morales FE. Garay HE. Vasilev D. Gavin JA. Wessjohann LA. Rivera DG. J. Org. Chem. 2015; 80: 6697
  • 20 Morejon MC. Laub A. Westermann B. Rivera DG. Wessjohann LA. Org. Lett. 2016; 18: 4096
  • 21 Beck B. Larbig G. Mejat B. Magnin-Lachaux M. Picard A. Herdtweck E. Dömling A. Org. Lett. 2003; 5: 1047
  • 22 Liao GP. Abdelraheem EM. M. Neochoritis CG. Kurpiewska K. Kalinowska-Tluscik J. McGowan DC. Dömling A. Org. Lett. 2015; 17: 4980
  • 23 Madhavachary R. Abdelraheem EM. M. Rossetti A. Twarda-Clapa A. Musielak B. Kurpiewska K. Kalinowska-Tłuścik J. Holak TA. Dömling A. Angew. Chem. Int. Ed. 2017; 56: 10725
    • 24a Abdelraheem EM. M. de Haan MP. Patil P. Kurpiewska K. Kalinowska-Tłuścik J. Shaabani S. Dömling A. Org. Lett. 2017; 19: 5078
    • 24b Abdelraheem EM. M. Khaksar S. Kalinowska-Tłuścik J. Shaabani S. Dömling A. J. Org. Chem. 2018; 83: 1441
  • 25 Vishwanatha TM. Bergamaschi E. Dömling A. Org. Lett. 2017; 19: 3195
  • 26 Abdelraheem EM. M. Kurpiewska K. Kalinowska-Tłuścik J. Dömling A. J. Org. Chem. 2016; 81: 8789
  • 27 Over B. Matsson P. Tyrchan C. Artursson P. Doak BC. Foley MA. Hilgendorf C. Johnston SE. Lee MD. IV. Lewis RJ. Nat. Chem. Biol. 2016; 12: 1065
  • 28 Whitty A. Zhong M. Viarengo L. Beglov D. Hall DR. Vajda S. Drug Discovery Today 2016; 21: 712
  • 29 Pye CR. Hewitt WM. Schwochert J. Haddad TD. Townsend CE. Etienne L. Lao Y. Limberakis C. Furukawa A. Mathiowetz AM. Price DA. Liras S. Lokey RS. J. Med. Chem. 2017; 60: 1665
  • 30 Matsson P. Kihlberg J. J. Med. Chem. 2017; 60: 1662
  • 31 Schärfer C. Schulz-Gasch T. Ehrlich H.-C. Guba W. Rarey M. Stahl M. J. Med. Chem. 2013; 56: 2016
  • 32 Clyne DS. Weiler L. Tetrahedron 2000; 56: 1281
  • 33 Chatterjee J. Rechenmacher F. Kessler H. Angew. Chem. Int. Ed. 2013; 52: 254
  • 34 Schwochert J. Turner R. Thang M. Berkeley RF. Ponkey AR. Rodriguez KM. Leung SS. Khunte B. Goetz G. Limberakis C. Org. Lett. 2015; 17: 2928
  • 35 Marelli UK. Ovadia O. Frank AO. Chatterjee J. Gilon C. Hoffman A. Kessler H. Chem. Eur. J. 2015; 21: 15148
    • 36a Herr RJ. Bioorg. Med. Chem. 2002; 10: 3379
    • 36b Zabrocki J. Dunbar JB. Jr. Marshall KW. Toth MV. Marshall GR. J. Org. Chem. 1992; 57: 202
    • 36c Zabrocki J. Smith GD. Dunbar JB. Iijima H. Marshall GR. J. Am. Chem. Soc. 1988; 110: 5875
  • 37 Chandgude AL. Dömling A. Eur. J. Org. Chem. 2016; 2383
  • 38 Wager TT. Hou X. Verhoest PR. Villalobos A. ACS Chem. Neurosci. 2010; 1: 435
  • 39 Oh K. Guan ZB. Chem. Commun. 2006; 3069
    • 40a Brik A. Alexandratos J. Lin YC. Elder JH. Olson AJ. Wlodawer A. Goodsell DS. Wong CH. ChemBioChem 2005; 6: 1167
    • 40b Angell Y. Burgess K. J. Org. Chem. 2005; 70: 9595
    • 40c Bock VD. Speijer D. Hiemstra H. van Maarseveen JH. Org. Biomol. Chem. 2007; 5: 971
    • 40d Hitotsuyanagi Y. Motegi S. Hasuda T. Takeya K. Org. Lett. 2004; 6: 1111
    • 40e Horne WS. Stout CD. Ghadiri MR. J. Am. Chem. Soc. 2003; 125: 9372
    • 40f Horne WS. Yadav MK. Stout CD. Ghadiri MR. J. Am. Chem. Soc. 2004; 126: 15366
    • 40g Goncalves V. Gautier B. Regazzetti A. Coric P. Bouaziz S. Garbay C. Vidal M. Inguimbert N. Bioorg. Med. Chem. Lett. 2007; 17: 5590
  • 41 Alex A. Millan DS. Perez M. Wakenhut F. Whitlock GA. MedChemComm 2011; 2: 669
  • 42 Kuhn B. Mohr P. Stahl M. J. Med. Chem. 2010; 53: 2601
  • 43 Bockus AT. Lexa KW. Pye CR. Kalgutkar AS. Gardner JW. Hund KC. Hewitt WM. Schwochert JA. Glassey E. Price DA. J. Med. Chem. 2015; 58: 4581
  • 44 Koes D. Khoury K. Huang Y. Wang W. Bista M. Popowicz GM. Wolf S. Holak TA. Dömling A. Camacho CJ. PLoS One 2012; 7: e32839
    • 45a Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
    • 45b Dömling A. Chem. Rev. 2006; 106: 17
    • 46a Koes DR. Camacho CJ. Nucleic Acids Res. 2012; 40: W387
    • 46b Koes DR. Camacho CJ. Bioinformatics 2011; 28: 784
    • 47a Popowicz GM. Czarna A. Wolf S. Wang K. Wang W. Dömling A. Holak TA. Cell Cycle 2010; 9: 1104
    • 47b Khoury K. Popowicz GM. Holak TA. Dömling A. MedChemComm 2011; 2: 246
    • 47c Huang YJ. Wolf S. Koes D. Popowicz GM. Camacho CJ. Holak TA. Dömling A. ChemMedChem 2012; 7: 49
    • 47d Shaabani S. Neochoritis CG. Twarda-Clapa A. Musielak B. Holak TA. Dömling A. MedChemComm 2017; 8: 1046
    • 47e Srivastava S. Beck B. Wang W. Czarna A. Holak TA. Dömling A. J. Comb. Chem. 2009; 11: 631
    • 47f Wang K. Doemling A. Cancer Res. 2009; 69
    • 47g Czarna A. Beck B. Srivastava S. Popowicz GM. Wolf S. Huang Y. Bista M. Holak TA. Dömling A. Angew. Chem. Int. Ed. 2010; 49: 5352
    • 47h Huang Y. Wolf S. Bista M. Meireles L. Camacho C. Holak TA. Dömling A. Chem. Biol. Drug Des. 2010; 76: 116
    • 47i Popowicz GM. Dömling A. Holak TA. Angew. Chem. Int. Ed. 2011; 50: 2680
    • 47j Christner, S. M.; Clausen, D. M.; Beumer, J. H.; Parise, R. A.; Huang, Y.; Dömling, A. S.; Eiseman, J. L. Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research,; 2012, 72 (8 Suppl.), Abstract Nr 4726; Mar 31–Apr 4.
    • 47k Wang W. Cao H. Wolf S. Camacho-Horvitz MS. Holak TA. Dömling A. Bioorg. Med. Chem. 2013; 21: 3982
    • 47l Huang Y. Wolf S. Beck B. Köhler L.-M. Khoury K. Popowicz GM. Goda SK. Subklewe M. Twarda A. Holak TA. ACS Chem. Biol. 2014; 9: 802
    • 47m Neochoritis C. Estrada-Ortiz N. Khoury K. Dömling A. Annu. Rep. Med. Chem. 2014; 49: 167
    • 47n Neochoritis CG. Wang K. Estrada-Ortiz N. Herdtweck E. Kubica K. Twarda A. Zak KM. Holak TA. Dömling A. Bioorg. Med. Chem. Lett. 2015; 25: 5661
    • 47o Surmiak E. Twarda-Clapa A. Zak KM. Musielak B. Tomala MD. Kubica K. Grudnik P. Madej M. Jablonski M. Potempa J. ACS Chem. Biol. 2016; 11: 3310
    • 47p Twarda-Clapa A. Krzanik S. Kubica K. Guzik K. Labuzek B. Neochoritis CG. Khoury K. Kowalska K. Czub M. Dubin G. Dömling A. Skalniak L. Holak TA. J. Med. Chem. 2017; 60: 4234
    • 47q Kroon E. Schulze JO. Süß E. Camacho CJ. Biondi RM. Dömling A. Angew. Chem. Int. Ed. 2015; 54: 13933
    • 48a Koes DR. Dömling A. Camacho CJ. Protein Science 2018; 27: 229
    • 48b Hawkins PC. D. J. Chem. Inf. Model. 2017; 57: 1747
    • 49a Chen I.-J. Foloppe N. Bioorg. Med. Chem. 2013; 21: 7898
    • 49b Watts KS. Dalal P. Tebben AJ. Cheney DL. Shelley JC. J. Chem. Inf. Model. 2014; 54: 2680
    • 49c Sindhikara D. Spronk SA. Day T. Borrelli K. Cheney DL. Posy SL. J. Chem. Inf. Model. 2017; 57: 1881
    • 49d Coutsias EA. Lexa KW. Wester MJ. Pollock SN. Jacobson MP. J. Chem. Theory Comput. 2016; 12: 4674
  • 50 Gerber PR. Gubernator K. Müller K. Helv. Chim. Acta 1988; 71: 1429