CC BY 4.0 · Synthesis 2018; 50(13): 2433-2462
DOI: 10.1055/s-0036-1591979
review
Copyright with the author

Some Aspects of the Chemistry of Alkynylsilanes

Gerald L. Larson*
Gelest Inc., 11 East Steel Road, Morrisville, PA 18940, USA   Email: jlarson@gelest.com
› Author Affiliations
Further Information

Publication History

Received: 26 January 2018

Accepted after revision: 13 March 2018

Publication Date:
18 May 2018 (online)


Abstract

In amongst the considerable chemistry of acetylenes there lies some unique chemistry of alkynylsilanes (silylacetylenes) some of which is reviewed herein. This unique character is exemplified not only in the silyl protection of the terminal C–H of acetylenes, but also in the ability of the silyl group to be converted into other functionalities after reaction of the alkynylsilane and to its ability to dictate and improve the regioselectivity of reactions at the triple bond. This, when combined with the possible subsequent transformations of the silyl group, makes their chemistry highly versatile and useful.

1 Introduction

2 Safety

3 Synthesis

4 Protiodesilylation

5 Sonogashira Reactions

6 Cross-Coupling with the C–Si Bond

7 Stille Cross-Coupling

8 Reactions at the Terminal Carbon

9 Cross-Coupling with Silylethynylmagnesium Bromides

10 Reactions of Haloethynylsilanes

11 Cycloaddition Reactions

11.1 Formation of Aromatic Rings

11.2 Diels–Alder Cyclizations

11.3 Formation of Heterocycles

11.4 Formation of 1,2,3-Triazines

11.5 [2+3] Cycloadditions

11.6 Other Cycloadditions

12 Additions to the C≡C Bond

13 Reactions at the C–Si Bond

14 Miscellaneous Reactions

 
  • References

    • 1a The Chemistry of the Carbon–Carbon Triple Bond Parts 1 and 2. Patai S. John Wiley; Chichester: 1978
    • 1b Transformations of copper acetylides: Adeleke AF. Brown AP. N. Cheng L.-J. Mosleh KA. M. Cordier CJ. Synthesis 2017; 49: 790
    • 1c Asymmetric alkynylations: Bisai V. Singh VK. Tetrahedron Lett. 2016; 57: 4771
    • 1d [2+2+2] Cycloaddition reactions of alkynes: Hapke M. Tetrahedron Lett. 2016; 57: 5719
    • 1e Alkenes in [2+2+2] cycloadditions (includes acetylenes): Dominguez G. Perez-Castells J. Chem. Eur. J. 2016; 22: 6720
    • 1f Alkenylation of arenes and heteroarenes with alkynes: Boyarskiy VP. Ryabukhin DS. Bokach NA. Vasilyev AV. Chem. Rev. 2016; 116: 5894
    • 1g Synthesis of conjugated enynes: Zhou Y. Zhang Y. Wang J. Org. Biomol. Chem. 2016; 14: 6638
    • 1h [Au]-catalyzed transformations of enynals, enynones, and enynols: Kumari AL. S. Reddy AS. Swamy KC. K. Org. Biomol. Chem. 2016; 14: 6651
    • 1i Au(I)-catalyzed activation of alkynes for the construction of molecular complexity: Dorel R. Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 1j Recent advances in the tandem reaction of azides with alkynes or alkynols: Song X.-R. Qiu Y.-F. Liu X.-Y. Liang Y.-M. Org. Biomol. Chem. 2016; 14: 11317
  • 2 Fegley GJ. Larson GL. Reagents for Silicon-Mediated Organic Synthesis. In Handbook of Reagents for Organic Synthesis. Fuchs PL. Wiley; Chichester: 2011: 755-761
  • 3 Perepichka DF. Jeeva S. Chem. Eng. News 2010; 88 (03) 2
  • 4 Corey EJ. Rucker C. Tetrahedron Lett. 1982; 23: 719
  • 5 Yuan C. Chang C.-T. Siegel D. J. Org. Chem. 2013; 78: 5647
  • 6 Kownacki I. Marciniec B. Dudziec B. Kubicki M. Organometallics 2011; 30: 2539
  • 7 Toutov AA. Betz KN. Shuman DP. Liu W.-B. Fedorov A. Stolz BM. Grubbs RH. J. Am. Chem. Soc. 2017; 139: 1668
  • 8 López S. Fernández-Trillo F. Castedo L. Saá C. Org. Lett. 2003; 5: 3725
  • 9 McLaughlin NP. Butler E. Evans P. Brunton NP. Koidis A. Rai DK. Tetrahedron 2010; 66: 9681
  • 10 Chinchilla R. Najera CJ. Chem. Soc. Rev. 2011; 40: 5084
  • 11 Nielsen MB. Synthesis 2016; 48: 2732
  • 12 Ivachtchenko AV. Mitkin OD. Yamanushkin PM. Kuznetsova IV. Bulanova EA. Shevkun NA. Koryakova AG. Karapetian RN. Bichko VV. Trifelenkov AS. Kravchenko DV. Vostokova NV. Veselov MS. Chufarova NV. Ivanenkov YA. J. Med. Chem. 2014; 57: 7716
  • 13 Gong Y. Liu J. Tetrahedron Lett. 2016; 57: 2143
  • 14 Torborg C. Huang J. Schulz T. Schäffner B. Zapf A. Spannenberg A. Börner A. Beller M. Chem. Eur. J. 2009; 15: 1329
  • 15 Höger S. Bonrad K. J. Org. Chem. 2000; 65: 2243
  • 16 Schäfer C. Herrmann F. Mattay J. Beilstein J. Org. Chem. 2008; 4: 41; DOI: 10.3762/bjoc.4.41
  • 17 Shi C. Aldrich CC. Org. Lett. 2010; 12: 2286
  • 18 Mio MJ. Kopel LC. Braun JB. Gadzikwa TL. Hull KL. Brisbois RG. Markworth CJ. Grieco PA. Org. Lett. 2002; 4: 3199
  • 19 Nakano M. Niimi K. Miyazaki E. Osaka I. Takimiya K. J. Org. Chem. 2012; 77: 8099
  • 20 Carril M. Correa A. Bolm C. Angew. Chem. Int. Ed. 2008; 47: 4862
  • 21 DeRoy PL. Surprenant S. Bertrand-Laperle M. Yoakim C. Org. Lett. 2007; 9: 2741
  • 22 Hatanaka Y. Hiyama T. J. Org. Chem. 1988; 53: 918
  • 23 Horita A. Tsurugi H. Funayama A. Satoh T. Miura M. Org. Lett. 2007; 9: 2231
  • 24 Montel F. Beaudegnies R. Kessabi J. Martin B. Muller E. Wendeborn S. Jung PM. J. Org. Lett. 2006; 8: 1905
  • 25 Denmark SE. Tymonko SA. J. Org. Chem. 2003; 68: 9151
  • 26 Chang S. Yang SH. Lee PH. Tetrahedron Lett. 2001; 42: 4833
  • 27 Hoshi M. Iizawa T. Okimoto M. Shirakawa K. Synthesis 2008; 3591
  • 28 Meana I. Albéniz AC. Espinet P. Adv. Synth. Catal. 2010; 352: 2887
  • 29 Kiyokawa K. Tachikaki N. Yasuda M. Baba A. Angew. Chem. Int. Ed. 2011; 50: 10393
  • 30 Jeon JH. Kim JH. Jeong YJ. Joeng IH. Tetrahedron Lett. 2014; 55: 1292
  • 31 Liu Z. Byun H.-S. Bittman R. Org. Lett. 2010; 12: 2974
  • 32 Pandithavidana DR. Poloukhtine A. Popik VV. J. Am. Chem. Soc. 2009; 131: 351
  • 33 Winter DK. Endoma-Arias MA. Hudlicky T. Beutler JA. Porco JA. Jr. J. Org. Chem. 2013; 78: 7617
  • 34 Adachi M. Higuchi K. Thasana N. Yamada H. Nishikawa T. Org. Lett. 2012; 14: 114
  • 35 Watanabe K. Iwata Y. Adachi S. Nishikawa T. Yoshida Y. Kameda S. Ide M. Saikawa Y. Nakata M. J. Org. Chem. 2010; 75: 5573
  • 36 Nishimura T. Sawano T. Ou K. Hayashi T. Chem. Commun. 2011; 47: 10142
  • 37 Frantz DE. Fässler R. Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
  • 38 García-Fortanet J. Murga J. Carda M. Marco JA. Tetrahedron 2004; 60: 12261
  • 39 Downey CW. Mahoney BD. Lipari VR. J. Org. Chem. 2009; 74: 2904
  • 40 Volla CM. R. Vogel P. Org. Lett. 2009; 11: 1701
  • 41 Ogata K. Sugasawa J. Atsuumi Y. Fukuzawa S.-i. Org. Lett. 2010; 12: 148
  • 42 Pérez García PM. Ren P. Scopelliti R. Hu X. ACS Catal. 2015; 5: 1164
  • 43 Tobisu M. Takahira T. Ohtsuki A. Chatani N. Org. Lett. 2015; 17: 680
  • 44 Hatakeyama T. Okada Y. Yoshimoto Y. Nakamura M. Angew. Chem. Int. Ed. 2011; 50: 10973
  • 45 Cheung CW. Ren P. Hu X. Org. Lett. 2014; 16: 2566
  • 46 Zhang M.-M. Gong J. Song R.-J. Li J.-H. Eur. J. Org. Chem. 2014; 6769
  • 47 Wang Y.-P. Danheiser RL. Tetrahedron Lett. 2011; 52: 2111
  • 48 Kohnen AL. Mak XY. Lam TY. Dunetz JR. Danheiser RL. Tetrahedron 2006; 62: 3815
  • 49 Dunetz JR. Danheiser RL. J. Am. Chem. Soc. 2005; 127: 5776
  • 50 Dunetz JR. Danheiser RL. Org. Lett. 2003; 5: 4011
  • 51 Yamada H. Hayashi T. Usuki T. Bull. Chem. Soc. Jpn. 2015; 88: 673
  • 52 Lubin-Germain N. Hallonet A. Huguenot F. Palmier S. Uziel J. Augé J. Org. Lett. 2007; 9: 3679
  • 53 Chalifoux WA. Ferguson MJ. Tykwinski RR. Eur. J. Org. Chem. 2007; 1001
  • 54 Hein SJ. Arslan H. Keresztes I. Dichtel WR. Org. Lett. 2014; 16: 4416
  • 55 Matsuda T. Miura N. Org. Biomol. Chem. 2013; 11: 3424
  • 56 Natarajan SR. Chen M.-H. Heller ST. Tynebor RM. Crawford EM. Minxiang C. Kaizheng H. Dong J. Hu B. Hao W. Chen S.-H. Tetrahedron Lett. 2006; 47: 5063
  • 57 Heya A. Namba T. Hara J. Shibata Y. Tanaka K. Tetrahedron Lett. 2015; 56: 4938
  • 58 Rodrigo SK. Powell IV. Colemen MG. Krause JA. Guan H. Org. Biomol. Chem. 2013; 11: 7653
  • 59 Kinoshita H. Takahashi H. Miura K. Org. Lett. 2013; 15: 2962
  • 60 Hilt G. Janikowski J. Org. Lett. 2009; 11: 773
  • 61 Mockel R. Hilt G. Org. Lett. 2015; 17: 1644
  • 62 Teske JA. Deiters A. Org. Lett. 2008; 10: 2195
  • 63 Maifeld SV. Lee D. Org. Lett. 2005; 7: 4995
  • 64 McIver AL. Deiters A. Org. Lett. 2010; 12: 1288
  • 65 Fukuyama T. Yamaura R. Higashibeppu Y. Okamura T. Ryu I. Kondo T. Mitsudo T. Org. Lett. 2005; 7: 5781
  • 66 Fukuyama T. Higashibeppu Y. Yamaura R. Ryu I. Org. Lett. 2007; 9: 587
  • 67 Denmark SE. Kallemeyn JM. J. Org. Chem. 2005; 70: 2839
  • 68 Wang X. Li S.-Y. Pan Y.-M. Wang H.-S. Liang H. Chen Z.-F. Org. Lett. 2014; 16: 580
  • 69 Pan Y.-M. Zhen F.-J. Lin H.-X. Zhan Z.-P. J. Org. Chem. 2009; 74: 3148
  • 70 Ischay MA. Takase MK. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2013; 135: 2478
  • 71 Inami T. Kurahashi T. Matsubara S. Org. Lett. 2014; 16: 5660
  • 72 Nakai K. Kurahashi T. Matsubara S. Org. Lett. 2013; 15: 856
  • 73 Kumar P. Louie J. Org. Lett. 2012; 14: 2026
  • 74 Yuan C. Chang C.-T. Axelrod A. Siegel D. J. Am. Chem. Soc. 2010; 132: 5924
  • 75 Lörincz K. Kele P. Novák Z. Synthesis 2009; 3527
  • 76 Ladouceur S. Soliman AM. Zysman-Colman E. Synthesis 2011; 3604
  • 77 Cuevas F. Oliva AI. Pericàs MA. Synlett 2010; 1873
  • 78 Qian W. Winternheimer D. Amegadzie A. Allen J. Tetrahedron Lett. 2012; 53: 271
  • 79 Matsuda T. Makino M. Murakami M. Chem. Lett. 2005; 34: 1416
  • 80 Harada Y. Nakanishi J. Fujihara H. Tobisu M. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2007; 129: 5766
  • 81 González J. Santamaría J. Ballesteros A. Angew. Chem. Int. Ed. 2015; 54: 13678
  • 82 Yamasaki R. Terashima N. Sotome I. Komagawa S. Saito S. J. Org. Chem. 2010; 75: 480
  • 83 Shibata Y. Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 10917
  • 84 Chen Q.-A. Cruz FA. Dong VM. J. Am. Chem. Soc. 2015; 137: 3157
  • 85 Matsuya Y. Hayashi K. Nemoto H. J. Am. Chem. Soc. 2003; 125: 646
  • 86 Shiba T. Kurahashi T. Matsubara S. J. Am. Chem. Soc. 2013; 135: 13636
  • 87 Matsuya Y. Hayashi K. Nemoto H. Chem. Eur. J. 2005; 11: 5408
  • 88 Yoshikawa T. Shindo M. Org. Lett. 2009; 11: 5378
  • 89 Nikolaev A. Orellana A. Org. Lett. 2015; 17: 5796
  • 90 Sato AH. Mihara S. Iwasawa T. Tetrahedron Lett. 2012; 53: 3585
  • 91 Matsuya Y. Hayashi K. Wada A. Nemoto H. J. Org. Chem. 2008; 73: 1987
  • 92 For a review of anion relay chemistry see: Smith AB. III. Adams CM. Acc. Chem. Res. 2004; 37: 365
  • 93 Mukherjee S. Kontokosta D. Patil A. Rallapalli S. Lee D. J. Org. Chem. 2009; 74: 9206
  • 94 Jung ME. Piizzi G. J. Org. Chem. 2002; 67: 3911
  • 95 Sproul KC. Chalifoux WA. Org. Lett. 2015; 17: 3334
  • 96 Kamienska-Trela K. Kania L. Sitkowski J. Bednarek E. J. Organomet. Chem. 1989; 364: 29
  • 97 Silwal S. Rahaim RJ. J. Org. Chem. 2014; 79: 8469
  • 98 Zhou C. Larock RC. Org. Lett. 2005; 7: 259
  • 99 Zhou C. Larock RC. J. Org. Chem. 2006; 71: 3184
  • 100 Kong W. Che C. Wu J. Ma L. Zhu G. J. Org. Chem. 2014; 79: 5799
  • 101 Ohmiya H. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed. 2005; 44: 2368
  • 102 May TL. Dabrowski JA. Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 736
  • 103 Joshi M. Tiwari R. Verma AK. Org. Lett. 2012; 14: 1106
  • 104 Sumida Y. Kato T. Yoshida S. Hosoya T. Org. Lett. 2012; 14: 1552
  • 105 Ilies L. Yoshida T. Nakamura E. Synlett 2014; 25: 527
  • 106 Mori Y. Mori T. Onodera G. Kimura M. Synthesis 2014; 46: 2287
  • 107 Mori T. Nakamura T. Onodera G. Kimura M. Synthesis 2012; 44: 2333
  • 108 Peh G. Floreancig PE. Org. Lett. 2012; 14: 5614
  • 109 Wong MY. Yamakawa T. Yoshikai N. Org. Lett. 2015; 17: 442
  • 110 Martin DB. C. Nguyen LQ. Vanderwal CD. J. Org. Chem. 2012; 77: 17
  • 111 Sidera M. Costa AM. Vilarrasa J. Org. Lett. 2011; 13: 4934
  • 112 For an example of direct lithiation of a (trimethylsilyl)acetylene see: Sharp PP. Banwell MG. Renner J. Lohmann K. Willis AC. Org. Lett. 2013; 15: 2616
  • 113 Xu Y. Pan Y. Liu P. Wang H. Tian X. Su G. J. Org. Chem. 2012; 77: 3557
  • 114 Nishimura T. Washitake Y. Uemura S. Adv. Synth. Catal. 2007; 349: 2563
  • 115 Zhou L. Chen L. Skouta R. Jiang H.-F. Li C.-J. Org. Biomol. Chem. 2008; 6: 2969
  • 116 Lin H.-Y. Causey R. Garcia GE. Snider BB. J. Org. Chem. 2012; 77: 7143
  • 117 Trost BM. Xie J. Maulide N. J. Am. Chem. Soc. 2008; 130: 17258
  • 118 Greszler SN. Malinowski JT. Johnson JS. J. Am. Chem. Soc. 2010; 132: 17393
  • 119 Greszler SN. Malinowski JT. Johnson JS. Org. Lett. 2011; 13: 3206
  • 120 Jiang X. Fu C. Ma S. Eur. J. Org. Chem. 2010; 687
  • 121 Corey EJ. Kirst HA. Tetrahedron Lett. 1968; 9: 5041
  • 122 Yamashita S. Naruko A. Nakazawa Y. Zhao L. Hayashi Y. Hirama M. Angew. Chem. Int. Ed. 2015; 54: 8538
  • 123 Wu B. Feast GC. Thompson AL. Robertson J. J. Org. Chem. 2012; 77: 10623
  • 124 Smith SW. Fu GC. J. Am. Chem. Soc. 2008; 130: 12645