CC BY-ND-NC 4.0 · SynOpen 2018; 02(02): 0122-0127
DOI: 10.1055/s-0036-1591999
paper
Copyright with the author

Diastereoselectivity in the Aza-Michael Reaction of Chiral α-Methylbenzylamines with α,β-Unsaturated Carbonyl Compounds

M. Kour
a   Department of chemistry, The IIS University, GurukulMarg, SFS, Mansarovar, Jaipur 302020, India   eMail: bansal56@gmail.com
,
R. Gupta
a   Department of chemistry, The IIS University, GurukulMarg, SFS, Mansarovar, Jaipur 302020, India   eMail: bansal56@gmail.com
,
R. Saini
b   Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
,
R. K. Bansal*
a   Department of chemistry, The IIS University, GurukulMarg, SFS, Mansarovar, Jaipur 302020, India   eMail: bansal56@gmail.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 15. März 2018

Accepted after revision: 05. April 2018

Publikationsdatum:
07. Mai 2018 (online)


Abstract

The aza-Michael reaction of (S)-(–)- and (R)-(+)-α-methylbenzylamines with trans-cinnamaldehyde and other α,β-unsaturated carbonyl compounds occurs with 52–98% diastereoselectivity (de); however, in the reaction with crotonaldehyde, the de is lower (20–38%). In the products obtained from the reaction with α,β-unsaturated aldehydes, the de could be determined on the basis of the relative intensities of the aldehydic protons of the two diastereomers. Theoretical investigations of the reaction of (S)-(–)-α-methylbenzylamine with trans-cinnamaldehyde at the DFT (B3LYP/6-31+G*) level reveal that the diastereomer formed from the attack of the amine on the Re face is thermodynamically more stable. The calculations also show that the aldehydic proton of this diastereomer is expected to be more deshielded, which on the basis of the 1H NMR spectrum is the major product.

Supporting Information

 
  • References

    • 1a Enders D. Wang C. Liebich JX. Chem. Eur. J. 2009; 15: 11058
    • 1b Weiner B. Szymanski W. Janssen DB. Minnaard AJ. Feringa BL. Chem. Soc. Rev. 2010; 39: 1656
    • 1c Phua PH. White AP. J. de Vries JG. Hii KK. Adv. Synth. Catal. 2006; 348: 587
    • 1d Phua PH. Mathew SP. White AP. J. de Varies JG. Blackmond DG. Hii KK. Chem. Eur. J. 2007; 13: 4602
    • 1e Hamashima Y. Somei H. Shimura Y. Tamura T. Sodeoka M. Org. Lett. 2004; 6: 1861
    • 2a Reboule I. Gil R. Collin J. Eur. J. Org. Chem. 2008; 532
    • 2b Scettri A. Massa A. Polombi L. Villano R. Acocella MR. Tetrahedron: Asymmetry 2008; 19: 2149
    • 2c Uraguchi D. Nakashima D. Ooi T. J. Am. Chem. Soc. 2009; 131: 7242
    • 2d Vicario JL. Badia D. Carrillo L. Synthesis 2007; 2065
  • 3 Urbach H. Henning R. Tetrahedron Lett. 1984; 25: 1143
    • 4a Baldwin SW. Aube J. Tetrahedron Lett. 1987; 28: 179
    • 4b Baldwin JE. Harwood LM. Lombard MJ. Tetrahedron 1984; 40: 4363
  • 5 Ishikawa T. Nagai K. Kudoh T. Saito S. Synlett 1995; 1171
    • 6a Howkin JM. Lewis TA. J. Org. Chem. 1992; 57: 2114
    • 6b Howkin JM. Fu GC. J. Org. Chem. 1986; 51: 2820
    • 7a Davies SG. Smith AD. Price PD. Tetrahedron: Asymmetry 2005; 16: 2833
    • 7b Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron: Asymmetry 2012; 23: 1111
  • 8 Costello JF. Davies SG. Ichihara O. Tetrahedron: Asymmetry 1994; 5: 1999
    • 9a Enders D. Bettray W. Raabe G. Runsink J. Synthesis 1994; 1322
    • 9b Enders D. Muller SF. Raabe G. Angew. Chem. Int. Ed. 1999; 38: 195
    • 9c Enders D. Wallert S. Synlett 2002; 304
  • 10 Prieto A. Fernandez R. Lassaletta JM. Vazquez J. Alvarez E. Tetrahedron 2005; 61: 4609
  • 11 Lucet D. Sabelle S. Kostelitz O. Gall TL. Mioskowski C. Eur. J. Org. Chem. 1999; 2586
    • 12a Estermann H. Seebach D. Helv. Chim. Acta 1988; 71: 1824
    • 12b Seebach D. Estermann H. Tetrahedron Lett. 1987; 28: 3103
    • 12c Davies SG. Ichihara O. Tetrahedron: Asymmetry 1991; 2: 183
    • 12d Juaristi E. Escalante J. Lamatsch B. Seebach D. J. Org. Chem. 1992; 57: 2396
    • 12e Furukawa M. Okawara T. Terawaki Y. Chem. Pharm. Bull. 1977; 25: 1319
  • 13 Torneg J. Prunet J. Org. Lett. 2008; 10: 45
  • 14 Tomberg A. Cesco SD. Huot M. Moitessier N. Tetrahedron Lett. 2015; 56: 6852
  • 15 Wenzel TJ. Tetrahedron: Asymmetry 2017; 28: 1212
  • 16 Dale JA. Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
  • 17 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Jr. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. lyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Auatin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PM. W. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03 (revision B.05); Gaussian, Inc., Wallingford, CT, USA, 2003
  • 18 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 19 Lee C. Yang W. Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1998; 37: 785