J Pediatr Genet 2016; 05(04): 184-188
DOI: 10.1055/s-0036-1592350
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Genetic Advances in Microphthalmia

Julie Plaisancie
1   Department of Medical Genetics, Purpan University Hospital, Toulouse, France
,
Patrick Calvas
1   Department of Medical Genetics, Purpan University Hospital, Toulouse, France
2   U1056 INSERM-FRE 3742 CNRS-Université Toulouse III, Toulouse, France
,
Nicolas Chassaing
1   Department of Medical Genetics, Purpan University Hospital, Toulouse, France
2   U1056 INSERM-FRE 3742 CNRS-Université Toulouse III, Toulouse, France
› Author Affiliations
Further Information

Publication History

01 October 2014

07 January 2015

Publication Date:
16 September 2016 (online)

Abstract

Congenital ocular anomalies such as anophthalmia and microphthalmia (AM) are severe craniofacial malformations in human. The etiologies of these ocular globe anomalies are diverse but the genetic origin appears to be a predominant cause. Until recently, genetic diagnosis capability was rather limited in AM patients and only a few genes were available for routine genetic testing. While some issues remain poorly understood, knowledge regarding the molecular basis of AM dramatically improved over the last years with the development of new molecular screening technologies. Thus, the genetic cause is now identifiable in more than 50% of patients with a severe bilateral eye phenotype and in around 30% of all AM patients taken together. Such advances in the knowledge of these genetic bases are important as they improve the quality of care, in terms of diagnosis, prognosis, and genetic counseling delivered to the patients and their families.

 
  • References

  • 1 Morrison D, FitzPatrick D, Hanson I , et al. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 2002; 39 (1) 16-22
  • 2 Shah SP, Taylor AE, Sowden JC , et al; Surveillance of Eye Anomalies Special Interest Group. Anophthalmos, microphthalmos, and Coloboma in the United kingdom: clinical features, results of investigations, and early management. Ophthalmology 2012; 119 (2) 362-368
  • 3 Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007; 2: 47
  • 4 Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab 2011; 104 (4) 448-456
  • 5 Bermejo E, Martínez-Frías ML. Congenital eye malformations: clinical-epidemiological analysis of 1,124,654 consecutive births in Spain. Am J Med Genet 1998; 75 (5) 497-504
  • 6 Chassaing N, Causse A, Vigouroux A , et al. Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin Genet 2014; 86 (4) 326-334
  • 7 Williamson KA, FitzPatrick DR. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 2014; 57 (8) 369-380
  • 8 Graw J. Eye development. Curr Top Dev Biol 2010; 90: 343-386
  • 9 Weiss AH, Kousseff BG, Ross EA, Longbottom J. Simple microphthalmos. Arch Ophthalmol 1989; 107 (11) 1625-1630
  • 10 Weiss AH, Kousseff BG, Ross EA, Longbottom J. Complex microphthalmos. Arch Ophthalmol 1989; 107 (11) 1619-1624
  • 11 Forrester MB, Merz RD. Descriptive epidemiology of anophthalmia and microphthalmia, Hawaii, 1986-2001. Birth Defects Res A Clin Mol Teratol 2006; 76 (3) 187-192
  • 12 Delahaye A, Bitoun P, Drunat S , et al. Genomic imbalances detected by array-CGH in patients with syndromal ocular developmental anomalies. Eur J Hum Genet 2012; 20 (5) 527-533
  • 13 Raca G, Jackson CA, Kucinskas L , et al. Array comparative genomic hybridization analysis in patients with anophthalmia, microphthalmia, and coloboma. Genet Med 2011; 13 (5) 437-442
  • 14 Fantes J, Ragge NK, Lynch SA , et al. Mutations in SOX2 cause anophthalmia. Nat Genet 2003; 33 (4) 461-463
  • 15 Chitayat D, Sroka H, Keating S , et al. The PDAC syndrome (pulmonary hypoplasia/agenesis, diaphragmatic hernia/eventration, anophthalmia/microphthalmia, and cardiac defect) (Spear syndrome, Matthew-Wood syndrome): report of eight cases including a living child and further evidence for autosomal recessive inheritance. Am J Med Genet A 2007; 143A (12) 1268-1281
  • 16 Pasutto F, Sticht H, Hammersen G , et al. Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 2007; 80 (3) 550-560
  • 17 Gerth-Kahlert C, Williamson K, Ansari M , et al. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med 2013; 1 (1) 15-31
  • 18 Schilter KF, Reis LM, Schneider A , et al. Whole-genome copy number variation analysis in anophthalmia and microphthalmia. Clin Genet 2013; 84 (5) 473-481
  • 19 Prokudin I, Simons C, Grigg JR , et al. Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur J Hum Genet 2014; 22 (7) 907-915
  • 20 Fares-Taie L, Gerber S, Chassaing N , et al. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet 2013; 92 (2) 265-270
  • 21 Srour M, Chitayat D, Caron V , et al. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 2013; 93 (4) 765-772
  • 22 Rainger J, Pehlivan D, Johansson S , et al; UK10K; Baylor-Hopkins Center for Mendelian Genomics. Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet 2014; 94 (6) 915-923
  • 23 Bakrania P, Efthymiou M, Klein JC , et al. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 2008; 82 (2) 304-319
  • 24 Wyatt AW, Osborne RJ, Stewart H, Ragge NK. Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mutat 2010; 31 (7) 781-787
  • 25 Asai-Coakwell M, French CR, Berry KM , et al. GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 2007; 80 (2) 306-315
  • 26 Ye M, Berry-Wynne KM, Asai-Coakwell M , et al. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 2010; 19 (2) 287-298
  • 27 Slavotinek AM, Chao R, Vacik T , et al. VAX1 mutation associated with microphthalmia, corpus callosum agenesis, and orofacial clefting: the first description of a VAX1 phenotype in humans. Hum Mutat 2012; 33 (2) 364-368
  • 28 Khan K, Logan CV, McKibbin M , et al. Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects. Hum Mol Genet 2012; 21 (4) 776-783
  • 29 Zahrani F, Aldahmesh MA, Alshammari MJ, Al-Hazzaa SA, Alkuraya FS. Mutations in c12orf57 cause a syndromic form of colobomatous microphthalmia. Am J Hum Genet 2013; 92 (3) 387-391
  • 30 Aldahmesh MA, Mohammed JY, Al-Hazzaa S, Alkuraya FS. Homozygous null mutation in ODZ3 causes microphthalmia in humans. Genet Med 2012; 14 (11) 900-904
  • 31 Scott AF, Mohr DW, Kasch LM , et al. Identification of an HMGB3 frameshift mutation in a family with an X-linked colobomatous microphthalmia syndrome using whole-genome and X-exome sequencing. JAMA Ophthalmol 2014; 132 (10) 1215-1220
  • 32 Williamson KA, Rainger J, Floyd JA , et al; UK10K Consortium. Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet 2014; 94 (2) 295-302
  • 33 Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14 (1) 49-55
  • 34 Hwang WY, Fu Y, Reyon D , et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013; 31 (3) 227-229
  • 35 Gestri G, Link BA, Neuhauss SC. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72 (3) 302-327
  • 36 Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007; 8 (5) 353-367
  • 37 Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997; 6 (4) 641-647
  • 38 Casey J, Kawaguchi R, Morrissey M , et al. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype. Hum Mutat 2011; 32 (12) 1417-1426
  • 39 Koriyama Y, Takagi Y, Chiba K , et al. Requirement of retinoic acid receptor β for genipin derivative-induced optic nerve regeneration in adult rat retina. PLoS ONE 2013; 8 (8) e71252
  • 40 Gregory-Evans CY, Wang X, Wasan KM, Zhao J, Metcalfe AL, Gregory-Evans K. Postnatal manipulation of Pax6 dosage reverses congenital tissue malformation defects. J Clin Invest 2014; 124 (1) 111-116