J Pediatr Genet 2016; 05(04): 209-219
DOI: 10.1055/s-0036-1593505
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Review of the Genetic Basis of Jaw Malformations

Mairaj K. Ahmed
1   Department of Dentistry/Oral & Maxillofacial Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
2   Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
,
Xiaoqian Ye
3   Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
,
Peter J. Taub
4   Division of Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
› Author Affiliations
Further Information

Publication History

28 September 2015

04 October 2015

Publication Date:
12 October 2016 (online)

Abstract

Genetic etiologies for congenital anomalies of the facial skeleton, namely, the maxilla and mandible, are important to understand and recognize. Malocclusions occur when there exist any significant deviation from what is considered a normal relationship between the upper jaw (maxilla) and the lower jaw (mandible). They may be the result of anomalies of the teeth alone, the bones alone, or both. A number of genes play a role in the facial skeletal development and are regulated by a host of additional regulatory molecules. As such, numerous craniofacial syndromes specifically affect the development of the jaws. The following review discusses several genetic anomalies that specifically affect the bones of the craniofacial skeleton and lead to malocclusion.

 
  • References

  • 1 van der Linden FPGM. Genetic and environmental factors in dentofacial morphology. Am J Orthod 1966; 52 (8) 576-583
  • 2 Angle EH. Treatment of Malocclusion of the Teeth: Angle's System. 7th ed. Philadelphia, PA: SS White Manufacturing Company; 1907
  • 3 Salzmann JA. Effect of molecular genetics and genetic engineering on the practice of orthodontics. Am J Orthod 1972; 61 (5) 437-472
  • 4 Tanner JM. “Nature and nurture”. In relation to growth and development. R Inst Public Health Hyg J 1965; 28 (10) 280-281
  • 5 Johnston MC, Bronsky PT. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit Rev Oral Biol Med 1995; 6 (4) 368-422
  • 6 Harris JE. Genetic factors in the growth of the head. Inheritance of the craniofacial complex and malocclusion. Dent Clin North Am 1975; 19 (1) 151-160
  • 7 Peck S, Peck L, Kataja M. Class II Division 2 malocclusion: a heritable pattern of small teeth in well-developed jaws. Angle Orthod 1998; 68 (1) 9-20
  • 8 Markovic MD. At the crossroads of oral facial genetics. Eur J Orthod 1992; 14 (6) 469-481
  • 9 Bayram S, Basciftci FA, Kurar E. Relationship between P561T and C422F polymorphisms in growth hormone receptor gene and mandibular prognathism. Angle Orthod 2014; 84 (5) 803-809
  • 10 Singh GD, McNamara JA, Lozanoff S. Morphometric analyses of craniofacial morphology in patients with class III malocclusion. Clin Anat 1996; 9: 3
  • 11 Davidov S, Geseva N, Donveca T, Delhova L. Incidence of prognathism in Bulgaria. Dent Abstr 1961; 6: 240
  • 12 Pascoe JJ, Hayward JR, Costich ER. Mandibular prognathism: its etiology and a classification. J Oral Surg Anesth Hosp Dent Serv 1960; 18: 21-24
  • 13 Gold JK. A new approach to the treatment of mandibular prognathism. Am J Orthod 1949; 35 (12) 893-912 , illust
  • 14 Fernex E, Hauenstein P, Roche M. Heredity and craniofacial morphology [in French]. Rep Congr Eur Orthod Soc 1967; 239-257
  • 15 Horowitz SL, Osborne RH, DeGeorge FV. A cephalometric study of craniofacial variation in adult twins. Angle Orthod 1960; 30: 1-5
  • 16 Stewart RE, Spence MA. The genetics of common dental diseases. In: Stewart RE, Prescott GH, eds. Oral Facial Genetics. St. Louis, MO: CV Mosby Company; 1976: 81-104
  • 17 Stromeyer W. Die Vereburg des Hapsburger Familientypus. Nova Acta Leopold 1937; 5: 219-296
  • 18 Susuki S. Studies on the so-called reverse occlusion. J Nihon Univ Sch Dent 1961; 5: 51-58
  • 19 Schulze C, Weise W. Zur vererburg der progenie. Fortschr Fte Kieferorthop 1965; 26: 213-229
  • 20 Watnick SS. Inheritance of craniofacial morphology. Angle Orthod 1972; 42 (4) 339-351
  • 21 Ikuno K, Kajii TS, Oka A, Inoko H, Ishikawa H, Iida J. Microsatellite genome-wide association study for mandibular prognathism. Am J Orthod Dentofacial Orthop 2014; 145 (6) 757-762
  • 22 Zhou J, Lu Y, Gao XH , et al. The growth hormone receptor gene is associated with mandibular height in a Chinese population. J Dent Res 2005; 84 (11) 1052-1056
  • 23 Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 2001; 229 (1) 141-162
  • 24 Xue F, Rabie AB, Luo G. Analysis of the association of COL2A1 and IGF-1 with mandibular prognathism in a Chinese population. Orthod Craniofac Res 2014; 17 (3) 144-149
  • 25 Frazier-Bowers S, Rincon-Rodriguez R, Zhou J, Alexander K, Lange E. Evidence of linkage in a Hispanic cohort with a Class III dentofacial phenotype. J Dent Res 2009; 88 (1) 56-60
  • 26 Li SW, Prockop DJ, Helminen H , et al. Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 1995; 9 (22) 2821-2830
  • 27 Huh A, Horton MJ, Cuenco KT , et al. Epigenetic influence of KAT6B and HDAC4 in the development of skeletal malocclusion. Am J Orthod Dentofacial Orthop 2013; 144 (4) 568-576
  • 28 Kraft M, Cirstea IC, Voss AK , et al. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest 2011; 121 (9) 3479-3491
  • 29 Vega RB, Matsuda K, Oh J , et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004; 119 (4) 555-566
  • 30 Nikopensius T, Saag M, Jagomägi T , et al. A missense mutation in DUSP6 is associated with Class III malocclusion. J Dent Res 2013; 92 (10) 893-898
  • 31 Li C, Scott DA, Hatch E, Tian X, Mansour SL. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 2007; 134 (1) 167-176
  • 32 Li Q, Li X, Zhang F, Chen F. The identification of a novel locus for mandibular prognathism in the Han Chinese population. J Dent Res 2011; 90 (1) 53-57
  • 33 Proetzel G, Pawlowski SA, Wiles MV , et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995; 11 (4) 409-414
  • 34 Jang JY, Park EK, Ryoo HM , et al. Polymorphisms in the Matrilin-1 gene and risk of mandibular prognathism in Koreans. J Dent Res 2010; 89 (11) 1203-1207
  • 35 Aszódi A, Bateman JF, Hirsch E , et al. Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage?. Mol Cell Biol 1999; 19 (11) 7841-7845
  • 36 Pichel JG, Fernández-Moreno C, Vicario-Abejón C, Testillano PS, Patterson PH, de Pablo F. Developmental cooperation of leukemia inhibitory factor and insulin-like growth factor I in mice is tissue-specific and essential for lung maturation involving the transcription factors Sp3 and TTF-1. Mech Dev 2003; 120 (3) 349-361
  • 37 Suemori H, Noguchi S. Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev Biol 2000; 220 (2) 333-342
  • 38 Opperman LA, Passarelli RW, Morgan EP, Reintjes M, Ogle RC. Cranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro. J Bone Miner Res 1995; 10 (12) 1978-1987
  • 39 Wilkie AO. Craniosynostosis: genes and mechanisms. Hum Mol Genet 1997; 6 (10) 1647-1656
  • 40 Mundlos S, Otto F, Mundlos C , et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997; 89 (5) 773-779
  • 41 Dixon MJ. Treacher Collins syndrome. Hum Mol Genet 1996; 5 (Spec No): 1391-1396
  • 42 Dixon J, Jones NC, Sandell LL , et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 2006; 103 (36) 13403-13408
  • 43 Morriss-Kay GM, Wilkie AO. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 2005; 207 (5) 637-653
  • 44 Petit P, Moerman P, Fryns JP. Acrofacial dysostosis syndrome type Rodriguez: a new lethal MCA syndrome. Am J Med Genet 1992; 42 (3) 343-345
  • 45 Christianson AL, Kruger H, Dini L. Atypical acrofacial dysostosis syndrome. Am J Med Genet 1994; 51 (1) 32-34
  • 46 Wieczorek D. Human facial dysostoses. Clin Genet 2013; 83 (6) 499-510
  • 47 Gordon CT, Weaver KN, Zechi-Ceide RM , et al. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet 2015; 96 (4) 519-531
  • 48 Lines MA, Huang L, Schwartzentruber J , et al; FORGE Canada Consortium. Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet 2012; 90 (2) 369-377
  • 49 Luquetti DV, Hing AV, Rieder MJ , et al. “Mandibulofacial dysostosis with microcephaly” caused by EFTUD2 mutations: expanding the phenotype. Am J Med Genet A 2013; 161A (1) 108-113
  • 50 Voigt C, Mégarbané A, Neveling K , et al. Oto-facial syndrome and esophageal atresia, intellectual disability and zygomatic anomalies - expanding the phenotypes associated with EFTUD2 mutations. Orphanet J Rare Dis 2013; 8: 110
  • 51 Hedera P, Toriello HV, Petty EM. Novel autosomal dominant mandibulofacial dysostosis with ptosis: clinical description and exclusion of TCOF1. J Med Genet 2002; 39 (7) 484-488
  • 52 Richieri-Costa A, Ribeiro LA. Macrostomia, preauricular tags, and external ophthalmoplegia: a new autosomal dominant syndrome within the oculoauriculovertebral spectrum?. Cleft Palate Craniofac J 2006; 43 (4) 429-434
  • 53 Toriello HV, Higgins JV, Abrahamson J, Waterman DF, Moore WD. X-linked syndrome of branchial arch and other defects. Am J Med Genet 1985; 21 (1) 137-142
  • 54 Gorlin RJ, Cohen MM, Levin LS. Syndromes of the Head and Neck. 3rd ed. New York, NY: Oxford University Press; 1990
  • 55 Franceschetti A, Brocher JE, Klein D. Unilateral mandibulo-facial dysostosis with multiple skeletal deformities (paramastoïde process, vertebral synostosis, sacralization, etc.) and clonic torticollis [in French]. Ophthalmologica 1949; 118 (4–5) 796-814
  • 56 Teber OA, Gillessen-Kaesbach G, Fischer S , et al. Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Hum Genet 2004; 12 (11) 879-890
  • 57 Cohen J, Ghezzi F, Gonçalves L, Fuentes JD, Paulyson KJ, Sherer DM. Prenatal sonographic diagnosis of Treacher Collins syndrome: a case and review of the literature. Am J Perinatol 1995; 12 (6) 416-419
  • 58 Bowman M, Oldridge M, Archer C , et al. Gross deletions in TCOF1 are a cause of Treacher-Collins-Franceschetti syndrome. Eur J Hum Genet 2012; 20 (7) 769-777
  • 59 Beygo J, Buiting K, Seland S , et al. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome. Mol Syndromol 2012; 2 (2) 53-59
  • 60 Macaya D, Katsanis SH, Hefferon TW , et al. A synonymous mutation in TCOF1 causes Treacher Collins syndrome due to mis-splicing of a constitutive exon. Am J Med Genet A 2009; 149A (8) 1624-1627
  • 61 Isaac C, Marsh KL, Paznekas WA , et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11 (9) 3061-3071
  • 62 Dixon J, Brakebusch C, Fässler R, Dixon MJ. Increased levels of apoptosis in the prefusion neural folds underlie the craniofacial disorder, Treacher Collins syndrome. Hum Mol Genet 2000; 9 (10) 1473-1480
  • 63 Dauwerse JG, Dixon J, Seland S , et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet 2011; 43 (1) 20-22
  • 64 Sakai D, Trainor PA. Treacher Collins syndrome: unmasking the role of Tcof1/treacle. Int J Biochem Cell Biol 2009; 41 (6) 1229-1232
  • 65 Valdez BC, Henning D, So RB, Dixon J, Dixon MJ. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci U S A 2004; 101 (29) 10709-10714
  • 66 Jones NC, Lynn ML, Gaudenz K , et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008; 14 (2) 125-133
  • 67 Sakai D, Dixon J, Dixon MJ, Trainor PA. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells. PLoS Genet 2012; 8 (3) e1002566
  • 68 Guion-Almeida ML, Zechi-Ceide RM, Vendramini S, Tabith Júnior A. A new syndrome with growth and mental retardation, mandibulofacial dysostosis, microcephaly, and cleft palate. Clin Dysmorphol 2006; 15 (3) 171-174
  • 69 Guion-Almeida ML, Vendramini-Pittoli S, Passos-Bueno MR, Zechi-Ceide RM. Mandibulofacial syndrome with growth and mental retardation, microcephaly, ear anomalies with skin tags, and cleft palate in a mother and her son: autosomal dominant or X-linked syndrome?. Am J Med Genet A 2009; 149A (12) 2762-2764
  • 70 Lines MA, Huang L, Schwartzentruber J , et al; FORGE Canada Consortium. Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet 2012; 90 (2) 369-377
  • 71 Czeschik JC, Voigt C, Alanay Y , et al. Clinical and mutation data in 12 patients with the clinical diagnosis of Nager syndrome. Hum Genet 2013; 132 (8) 885-898
  • 72 Luquetti DV, Hing AV, Rieder MJ , et al. “Mandibulofacial dysostosis with microcephaly” caused by EFTUD2 mutations: expanding the phenotype. Am J Med Genet A 2013; 161A (1) 108-113
  • 73 Johnson TL, Vilardell J. Regulated pre-mRNA splicing: the ghostwriter of the eukaryotic genome. Biochim Biophys Acta 2012; 1819 (6) 538-545
  • 74 Gordon CT, Petit F, Oufadem M , et al. EFTUD2 haploinsufficiency leads to syndromic oesophageal atresia. J Med Genet 2012; 49 (12) 737-746
  • 75 Nager FR, de Reynier JP. Das Gehoerorgan bei den angeborenen Kopfwissbildungen. Pract Otorhinolaryng 1948; 10: 1-128
  • 76 Lin JL. Nager syndrome: a case report. Pediatr Neonatol 2012; 53 (2) 147-150
  • 77 McDonald MT, Gorski JL. Nager acrofacial dysostosis. J Med Genet 1993; 30 (9) 779-782
  • 78 Herrmann BW, Karzon R, Molter DW. Otologic and audiologic features of Nager acrofacial dysostosis. Int J Pediatr Otorhinolaryngol 2005; 69 (8) 1053-1059
  • 79 Chemke J, Mogilner BM, Ben-Itzhak I, Zurkowski L, Ophir D. Autosomal recessive inheritance of Nager acrofacial dysostosis. J Med Genet 1988; 25 (4) 230-232
  • 80 Friedman RA, Wood E, Pransky SM, Seid AB, Kearns DB. Nager acrofacial dysostosis: management of a difficult airway. Int J Pediatr Otorhinolaryngol 1996; 35 (1) 69-72
  • 81 Groeper K, Johnson JO, Braddock SR, Tobias JD. Anaesthetic implications of Nager syndrome. Paediatr Anaesth 2002; 12 (4) 365-368
  • 82 Bernier FP, Caluseriu O, Ng S , et al; FORGE Canada Consortium. Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am J Hum Genet 2012; 90 (5) 925-933
  • 83 Champion-Arnaud P, Reed R. The prespliceosome components SAP 49 and SAP 145 interact in a complex implicated in tethering U2 snRNP to the branch site. Genes Dev 1994; 8 (16) 1974-1983
  • 84 Watanabe H, Shionyu M, Kimura T, Kimata K, Watanabe H. Splicing factor 3b subunit 4 binds BMPR-IA and inhibits osteochondral cell differentiation. J Biol Chem 2007; 282 (28) 20728-20738
  • 85 Miller M, Fineman R, Smith DW. Postaxial acrofacial dysostosis syndrome. J Pediatr 1979; 95 (6) 970-975
  • 86 Fukushima R, Kanamori S, Hirashiba M , et al. Teratogenicity study of the dihydroorotate-dehydrogenase inhibitor and protein tyrosine kinase inhibitor Leflunomide in mice. Reprod Toxicol 2007; 24 (3–4) 310-316
  • 87 White RM, Cech J, Ratanasirintrawoot S , et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471 (7339) 518-522
  • 88 Hail Jr N, Chen P, Kepa JJ, Bushman LR, Shearn C. Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis. Free Radic Biol Med 2010; 49 (1) 109-116