Semin Thromb Hemost 2017; 43(01): 036-047
DOI: 10.1055/s-0036-1597292
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Gene Variations in the Protein C and Fibrinolytic Pathway: Relevance for Severity and Outcome in Pediatric Sepsis

Navin P. Boeddha
1   Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
2   Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Marieke Emonts
3   Department of Paediatric Infectious Diseases and Immunology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
4   Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
,
Marjon H. Cnossen
5   Division of Pediatric Hematology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Moniek P. de Maat
6   Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Frank W. Leebeek
6   Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Gertjan J. Driessen
2   Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Jan A. Hazelzet
7   Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
15 December 2016 (online)

Abstract

The host response to infection involves complex interplays between inflammation, coagulation, and fibrinolysis. Deregulation of hemostasis and fibrinolysis are major causes of critical illness and important determinants of outcome in severe sepsis. The hemostatic responses to infection vary widely between individuals, and are in part explained by polymorphisms in genes responsible for the protein C and fibrinolytic pathway. This review gives an overview of genetic polymorphisms in the protein C and fibrinolytic pathway associated with susceptibility and severity of pediatric sepsis. In addition, genetic polymorphisms associated with adult sepsis and other pediatric thromboembolic disorders are discussed, as these polymorphisms might be candidates for future molecular genetic research in pediatric sepsis.

Supplementary Material

 
  • References

  • 1 Weiss SL, Fitzgerald JC, Pappachan J , et al; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191 (10) 1147-1157
  • 2 Esmon CT. The interactions between inflammation and coagulation. Br J Haematol 2005; 131 (4) 417-430
  • 3 Zeerleder S, Hack CE, Wuillemin WA. Disseminated intravascular coagulation in sepsis. Chest 2005; 128 (4) 2864-2875
  • 4 Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. Semin Thromb Hemost 2013; 39 (5) 559-566
  • 5 Leclerc F, Hazelzet J, Jude B , et al. Protein C and S deficiency in severe infectious purpura of children: a collaborative study of 40 cases. Intensive Care Med 1992; 18 (4) 202-205
  • 6 Macias WL, Nelson DR. Severe protein C deficiency predicts early death in severe sepsis. Crit Care Med 2004; 32 , (5 Suppl): S223-S228
  • 7 Hermans PW, Hibberd ML, Booy R , et al; Meningococcal Research Group. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Lancet 1999; 354 (9178) 556-560
  • 8 Li L, Nie W, Zhou H, Yuan W, Li W, Huang W. Association between plasminogen activator inhibitor-1 -675 4G/5G polymorphism and sepsis: a meta-analysis. PLoS One 2013; 8 (1) e54883
  • 9 Lorente L, Martín MM, Borreguero-León JM , et al. Sustained high plasma plasminogen activator inhibitor-1 levels are associated with severity and mortality in septic patients. Thromb Res 2014; 134 (1) 182-186
  • 10 Texereau J, Pene F, Chiche JD, Rousseau C, Mira JP. Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis. Crit Care Med 2004; 32 , (5 Suppl): S313-S319
  • 11 Arcaroli J, Fessler MB, Abraham E. Genetic polymorphisms and sepsis. Shock 2005; 24 (4) 300-312
  • 12 Jackson CJ, Xue M. Activated protein C--an anticoagulant that does more than stop clots. Int J Biochem Cell Biol 2008; 40 (12) 2692-2697
  • 13 Esmon CT. The protein C pathway. Chest 2003; 124 , (3 Suppl): 26S-32S
  • 14 Castoldi E, Simioni P, Tormene D , et al. Differential effects of high prothrombin levels on thrombin generation depending on the cause of the hyperprothrombinemia. J Thromb Haemost 2007; 5 (5) 971-979
  • 15 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88 (10) 3698-3703
  • 16 Danckwardt S, Gehring NH, Neu-Yilik G , et al. The prothrombin 3'end formation signal reveals a unique architecture that is sensitive to thrombophilic gain-of-function mutations. Blood 2004; 104 (2) 428-435
  • 17 Ruiz-Argüelles GJ, Garcés-Eisele J, Reyes-Núñez V, Ramírez-Cisneros FJ. Primary thrombophilia in Mexico. II. Factor V G1691A (Leiden), prothrombin G20210A, and methylenetetrahydrofolate reductase C677T polymorphism in thrombophilic Mexican mestizos. Am J Hematol 2001; 66 (1) 28-31
  • 18 Varela ML, Adamczuk YP, Forastiero RR , et al. Major and potential prothrombotic genotypes in a cohort of patients with venous thromboembolism. Thromb Res 2001; 104 (5) 317-324
  • 19 Renner W, Köppel H, Hoffmann C , et al. Prothrombin G20210A, factor V Leiden, and factor XIII Val34Leu: common mutations of blood coagulation factors and deep vein thrombosis in Austria. Thromb Res 2000; 99 (1) 35-39
  • 20 Le Cam-Duchez V, Bagan-Triquenot A, Ménard JF, Mihout B, Borg JY. Association of the protein C promoter CG haplotype and the factor II G20210A mutation is a risk factor for cerebral venous thrombosis. Blood Coagul Fibrinolysis 2005; 16 (7) 495-500
  • 21 De Stefano V, Chiusolo P, Paciaroni K , et al. Prothrombin G20210A mutant genotype is a risk factor for cerebrovascular ischemic disease in young patients. Blood 1998; 91 (10) 3562-3565
  • 22 Nowak-Göttl U, Sträter R, Heinecke A , et al. Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin, and methylenetetrahydrofolate reductase are risk factors of spontaneous ischemic stroke in childhood. Blood 1999; 94 (11) 3678-3682
  • 23 Martinelli I, Battaglioli T, Razzari C, Mannucci PM. Type and location of venous thromboembolism in patients with factor V Leiden or prothrombin G20210A and in those with no thrombophilia. J Thromb Haemost 2007; 5 (1) 98-101
  • 24 Emmerich J, Rosendaal FR, Cattaneo M , et al; Study Group for Pooled-Analysis in Venous Thromboembolism. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism--pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Thromb Haemost 2001; 86 (3) 809-816
  • 25 Ceelie H, Bertina RM, van Hylckama Vlieg A, Rosendaal FR, Vos HL. Polymorphisms in the prothrombin gene and their association with plasma prothrombin levels. Thromb Haemost 2001; 85 (6) 1066-1070
  • 26 Pérez-Ceballos E, Corral J, Alberca I , et al. Prothrombin A19911G and G20210A polymorphisms' role in thrombosis. Br J Haematol 2002; 118 (2) 610-614
  • 27 Martinelli I, Battaglioli T, Tosetto A , et al. Prothrombin A19911G polymorphism and the risk of venous thromboembolism. J Thromb Haemost 2006; 4 (12) 2582-2586
  • 28 Fuentes-Prior P, Iwanaga Y, Huber R , et al. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature 2000; 404 (6777) 518-525
  • 29 Boehme MW, Galle P, Stremmel W. Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology 2002; 107 (3) 340-349
  • 30 Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood 1990; 76 (10) 2024-2029
  • 31 Lin SM, Wang YM, Lin HC , et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit Care Med 2008; 36 (3) 683-689
  • 32 Moore KL, Andreoli SP, Esmon NL, Esmon CT, Bang NU. Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J Clin Invest 1987; 79 (1) 124-130
  • 33 Hayakawa M, Yamakawa K, Saito S , et al; Japan Septic Disseminated Intravascular Coagulation (JSEPTIC DIC) study group. Recombinant human soluble thrombomodulin and mortality in sepsis-induced disseminated intravascular coagulation. A multicentre retrospective study. Thromb Haemost 2016; 115 (6) 1157-1166
  • 34 Yamakawa K, Aihara M, Ogura H, Yuhara H, Hamasaki T, Shimazu T. Recombinant human soluble thrombomodulin in severe sepsis: a systematic review and meta-analysis. J Thromb Haemost 2015; 13 (4) 508-519
  • 35 Kager LM, Wiersinga WJ, Roelofs JJ , et al. A thrombomodulin mutation that impairs active protein C generation is detrimental in severe pneumonia-derived gram-negative sepsis (melioidosis). PLoS Negl Trop Dis 2014; 8 (4) e2819
  • 36 Cole JW, Roberts SC, Gallagher M , et al; Stroke Prevention in Young Women Study. Thrombomodulin Ala455Val polymorphism and the risk of cerebral infarction in a biracial population: The stroke prevention in young women study. BMC Neurol 2004; 4 (1) 21
  • 37 Faioni EM, Franchi F, Castaman G, Biguzzi E, Rodeghiero F. Mutations in the thrombomodulin gene are rare in patients with severe thrombophilia. Br J Haematol 2002; 118 (2) 595-599
  • 38 Delvaeye M, Noris M, De Vriese A , et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361 (4) 345-357
  • 39 Aleksic N, Folsom AR, Cushman M, Heckbert SR, Tsai MY, Wu KK. Prospective study of the A455V polymorphism in the thrombomodulin gene, plasma thrombomodulin, and incidence of venous thromboembolism: the LITE Study. J Thromb Haemost 2003; 1 (1) 88-94
  • 40 Fan X, Yoshida Y, Honda S , et al. Analysis of genetic and predisposing factors in Japanese patients with atypical hemolytic uremic syndrome. Mol Immunol 2013; 54 (2) 238-246
  • 41 Sipahi T, Pocan H, Akar N. Effect of various genetic polymorphisms on the incidence and outcome of severe sepsis. Clin Appl Thromb Hemost 2006; 12 (1) 47-54
  • 42 Ulu A, Gunal D, Tiras S, Egin Y, Deda G, Akar N. EPCR gene A3 haplotype and elevated soluble endothelial protein C receptor (sEPCR) levels in Turkish pediatric stroke patients. Thromb Res 2007; 120 (1) 47-52
  • 43 Vassiliou AG, Maniatis NA, Kotanidou A , et al. Endothelial protein C receptor polymorphisms and risk of severe sepsis in critically ill patients. Intensive Care Med 2013; 39 (10) 1752-1759
  • 44 Kinasewitz GT, Yan SB, Basson B , et al; PROWESS Sepsis Study Group. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care 2004; 8 (2) R82 –R90
  • 45 de Kleijn ED, de Groot R, Hack CE , et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 2003; 31 (6) 1839-1847
  • 46 Bernard GR, Vincent JL, Laterre PF , et al; Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344 (10) 699-709
  • 47 Kalil AC, LaRosa SP. Effectiveness and safety of drotrecogin alfa (activated) for severe sepsis: a meta-analysis and metaregression. Lancet Infect Dis 2012; 12 (9) 678-686
  • 48 Spek CA, Poort SR, Bertina RM, Reitsma PH. Determination of the allelic and haplotype frequencies of three polymorphisms in the promoter region of the human protein C gene. Blood Coagul Fibrinolysis 1994; 5 (2) 309-311
  • 49 Spek CA, Koster T, Rosendaal FR, Bertina RM, Reitsma PH. Genotypic variation in the promoter region of the protein C gene is associated with plasma protein C levels and thrombotic risk. Arterioscler Thromb Vasc Biol 1995; 15 (2) 214-218
  • 50 Binder A, Endler G, Rieger S , et al; Central European Meningococcal Genetic Study Group. Protein C promoter polymorphisms associate with sepsis in children with systemic meningococcemia. Hum Genet 2007; 122 (2) 183-190
  • 51 Walley KR, Russell JA. Protein C -1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med 2007; 35 (1) 12-17
  • 52 Chen QX, Wu SJ, Wang HH , et al. Protein C -1641A/-1654C haplotype is associated with organ dysfunction and the fatal outcome of severe sepsis in Chinese Han population. Hum Genet 2008; 123 (3) 281-287
  • 53 Russell JA, Wellman H, Walley KR. Protein C rs2069912 C allele is associated with increased mortality from severe sepsis in North Americans of East Asian ancestry. Hum Genet 2008; 123 (6) 661-663
  • 54 Zhang YJ, Miao YF, Cheng KB, Yue J, Tan XY, Liu JM. Protein C polymorphism and susceptibility to PTE in China. Blood Coagul Fibrinolysis 2012; 23 (8) 693-699
  • 55 Schwarz HP, Fischer M, Hopmeier P, Batard MA, Griffin JH. Plasma protein S deficiency in familial thrombotic disease. Blood 1984; 64 (6) 1297-1300
  • 56 Sheth SB, Carvalho AC. Protein S and C alterations in acutely ill patients. Am J Hematol 1991; 36 (1) 14-19
  • 57 Kimura R, Honda S, Kawasaki T , et al. Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood 2006; 107 (4) 1737-1738
  • 58 Kinoshita S, Iida H, Inoue S , et al. Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. Clin Biochem 2005; 38 (10) 908-915
  • 59 Liu W, Yin T, Okuda H , et al. Protein S K196E mutation, a genetic risk factor for venous thromboembolism, is limited to Japanese. Thromb Res 2013; 132 (2) 314-315
  • 60 Draxler DF, Medcalf RL. The fibrinolytic system-more than fibrinolysis?. Transfus Med Rev 2015; 29 (2) 102-109
  • 61 Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129 (3) 307-321
  • 62 Rijken DC, Abdul S, Malfliet JJ, Leebeek FW, Uitte de Willige S. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII. J Thromb Haemost 2016; 14 (7) 1453-1461
  • 63 Sakata Y, Curriden S, Lawrence D, Griffin JH, Loskutoff DJ. Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity. Proc Natl Acad Sci U S A 1985; 82 (4) 1121-1125
  • 64 Mosnier LO, Bouma BN. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 2006; 26 (11) 2445-2453
  • 65 Gando S. Role of fibrinolysis in sepsis. Semin Thromb Hemost 2013; 39 (4) 392-399
  • 66 Raum D, Marcus D, Alper CA, Levey R, Taylor PD, Starzl TE. Synthesis of human plasminogen by the liver. Science 1980; 208 (4447) 1036-1037
  • 67 Petersen TE, Martzen MR, Ichinose A, Davie EW. Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem 1990; 265 (11) 6104-6111
  • 68 Ichinose A, Espling ES, Takamatsu J , et al. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci U S A 1991; 88 (1) 115-119
  • 69 Dolan G, Greaves M, Cooper P, Preston FE. Thrombovascular disease and familial plasminogen deficiency: a report of three kindreds. Br J Haematol 1988; 70 (4) 417-421
  • 70 Sartori MT, Patrassi GM, Theodoridis P, Perin A, Pietrogrande F, Girolami A. Heterozygous type I plasminogen deficiency is associated with an increased risk for thrombosis: a statistical analysis in 20 kindreds. Blood Coagul Fibrinolysis 1994; 5 (6) 889-893
  • 71 Brandt JT. Plasminogen and tissue-type plasminogen activator deficiency as risk factors for thromboembolic disease. Arch Pathol Lab Med 2002; 126 (11) 1376-1381
  • 72 Shigekiyo T, Kanazuka M, Aihara K , et al. No increased risk of thrombosis in heterozygous congenital dysplasminogenemia. Int J Hematol 2000; 72 (2) 247-252
  • 73 Syrovets T, Lunov O, Simmet T. Plasmin as a proinflammatory cell activator. J Leukoc Biol 2012; 92 (3) 509-519
  • 74 Donmez-Demir B, Celkan T, Sarper N , et al. Novel plasminogen gene mutations in Turkish patients with type I plasminogen deficiency. Blood Coagul Fibrinolysis 2016; 27 (6) 637-644
  • 75 Raum D, Marcus D, Alper CA. Genetic polymorphism of human plasminogen. Am J Hum Genet 1980; 32 (5) 681-689
  • 76 Klammt J, Kobelt L, Aktas D , et al. Identification of three novel plasminogen (PLG) gene mutations in a series of 23 patients with low PLG activity. Thromb Haemost 2011; 105 (3) 454-460
  • 77 Kłak M, Anäkkälä N, Wang W , et al. Tranexamic acid, an inhibitor of plasminogen activation, aggravates staphylococcal septic arthritis and sepsis. Scand J Infect Dis 2010; 42 (5) 351-358
  • 78 Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol 1994; 144 (5) 855-861
  • 79 Kooistra T, Schrauwen Y, Arts J, Emeis JJ. Regulation of endothelial cell t-PA synthesis and release. Int J Hematol 1994; 59 (4) 233-255
  • 80 Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 1982; 704 (3) 461-469
  • 81 Mondino A, Blasi F. uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 2004; 25 (8) 450-455
  • 82 Goldhaber SZ, Haire WD, Feldstein ML , et al. Alteplase versus heparin in acute pulmonary embolism: randomised trial assessing right-ventricular function and pulmonary perfusion. Lancet 1993; 341 (8844) 507-511
  • 83 Ouriel K, Veith FJ, Sasahara AA ; Thrombolysis or Peripheral Arterial Surgery (TOPAS) Investigators. A comparison of recombinant urokinase with vascular surgery as initial treatment for acute arterial occlusion of the legs. N Engl J Med 1998; 338 (16) 1105-1111
  • 84 Winkler F, Kastenbauer S, Koedel U, Pfister HW. Role of the urokinase plasminogen activator system in patients with bacterial meningitis. Neurology 2002; 59 (9) 1350-1355
  • 85 Philippé J, Offner F, Declerck PJ , et al. Fibrinolysis and coagulation in patients with infectious disease and sepsis. Thromb Haemost 1991; 65 (3) 291-295
  • 86 Philippé J, Dooijewaard G, Offner F, Turion P, Baele G, Leroux-Roels G. Granulocyte elastase, tumor necrosis factor-alpha and urokinase levels as prognostic markers in severe infection. Thromb Haemost 1992; 68 (1) 19-23
  • 87 Jern C, Ladenvall P, Wall U, Jern S. Gene polymorphism of t-PA is associated with forearm vascular release rate of t-PA. Arterioscler Thromb Vasc Biol 1999; 19 (2) 454-459
  • 88 Valle-Garay E, Montes AH, Corte JR, Meana A, Fierer J, Asensi V. tPA Alu (I/D) polymorphism associates with bacterial osteomyelitis. J Infect Dis 2013; 208 (2) 218-223
  • 89 Ladenvall P, Wall U, Jern S, Jern C. Identification of eight novel single-nucleotide polymorphisms at human tissue-type plasminogen activator (t-PA) locus: association with vascular t-PA release in vivo. Thromb Haemost 2000; 84 (2) 150-155
  • 90 Li JF, Lin Y, Yang YH , et al. Fibrinogen A(alpha) Thr312Ala polymorphism specifically contributes to chronic thromboembolic pulmonary hypertension by increasing fibrin resistance. PLoS One 2013; 8 (7) e69635
  • 91 Dosne AM, Dupuy E, Bodevin E. Production of a fibrinolytic inhibitor by cultured endothelial cells derived from human umbilical vein. Thromb Res 1978; 12 (3) 377-387
  • 92 Kawano T, Morimoto K, Uemura Y. Urokinase inhibitor in human placenta. Nature 1968; 217 (5125) 253-254
  • 93 Scott RW, Bergman BL, Bajpai A , et al. Protease nexin. Properties and a modified purification procedure. J Biol Chem 1985; 260 (11) 7029-7034
  • 94 Pollack MM, Ruttimann UE, Getson PR. Pediatric risk of mortality (PRISM) score. Crit Care Med 1988; 16 (11) 1110-1116
  • 95 Binder A, Endler G, Müller M, Mannhalter C, Zenz W ; European Meningococcal Study Group. 4G4G genotype of the plasminogen activator inhibitor-1 promoter polymorphism associates with disseminated intravascular coagulation in children with systemic meningococcemia. J Thromb Haemost 2007; 5 (10) 2049-2054
  • 96 Geishofer G, Binder A, Müller M , et al; Central European Meningococcal Genetic Study Group. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene in children with systemic meningococcaemia. Eur J Pediatr 2005; 164 (8) 486-490
  • 97 Haralambous E, Hibberd ML, Hermans PWM, Ninis N, Nadel S, Levin M. Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med 2003; 31 (12) 2788-2793
  • 98 Sapru A, Hansen H, Ajayi T , et al. 4G/5G polymorphism of plasminogen activator inhibitor-1 gene is associated with mortality in intensive care unit patients with severe pneumonia. Anesthesiology 2009; 110 (5) 1086-1091
  • 99 Yende S, Angus DC, Ding J , et al; Health ABC Study. 4G/5G plasminogen activator inhibitor-1 polymorphisms and haplotypes are associated with pneumonia. Am J Respir Crit Care Med 2007; 176 (11) 1129-1137
  • 100 Komitopoulou A, Platokouki H, Kapsimali Z , et al. Mutations and polymorphisms in genes affecting haemostasis components in children with thromboembolic events. Pathophysiol Haemost Thromb 2006; 35 (5) 392-397
  • 101 Mansilha A, Araújo F, Severo M, Sampaio SM, Toledo T, Albuquerque R. Genetic polymorphisms and risk of recurrent deep venous thrombosis in young people: prospective cohort study. Eur J Vasc Endovasc Surg 2005; 30 (5) 545-549
  • 102 Balcerzyk A, Żak I, Emich-Widera E , et al. The plasminogen activator inhibitor-1 gene polymorphism in determining the risk of pediatric ischemic stroke--case control and family-based study. Neuropediatrics 2011; 42 (2) 67-70
  • 103 Komitopoulou A, Platokouki H, Kapsimali Z, Pergantou H, Adamtziki E, Aronis S. Mutations and polymorphisms in genes affecting hemostasis proteins and homocysteine metabolism in children with arterial ischemic stroke. Cerebrovasc Dis 2006; 22 (1) 13-20
  • 104 Lynch JK, Han CJ, Nee LE, Nelson KB. Prothrombotic factors in children with stroke or porencephaly. Pediatrics 2005; 116 (2) 447-453
  • 105 Nowak-Göttl U, Sträter R, Kosch A , et al; Childhood Stroke Study Group. The plasminogen activator inhibitor (PAI)-1 promoter 4G/4G genotype is not associated with ischemic stroke in a population of German children. Eur J Haematol 2001; 66 (1) 57-62
  • 106 Calabrò RS, La Spina P, Serra S , et al. Prevalence of prothrombotic polymorphisms in a selected cohort of cryptogenic and noncryptogenic ischemic stroke patients. Neurol India 2009; 57 (5) 636-637
  • 107 Kathiresan S, Gabriel SB, Yang Q , et al. Comprehensive survey of common genetic variation at the plasminogen activator inhibitor-1 locus and relations to circulating plasminogen activator inhibitor-1 levels. Circulation 2005; 112 (12) 1728-1735
  • 108 Laine O, Joutsi-Korhonen L, Mäkelä S , et al. Polymorphisms of PAI-1 and platelet GP Ia may associate with impairment of renal function and thrombocytopenia in Puumala hantavirus infection. Thromb Res 2012; 129 (5) 611-615
  • 109 Bouton MC, Boulaftali Y, Richard B, Arocas V, Michel JB, Jandrot-Perrus M. Emerging role of serpinE2/protease nexin-1 in hemostasis and vascular biology. Blood 2012; 119 (11) 2452-2457
  • 110 Vaughan PJ, Cunningham DD. Regulation of protease nexin-1 synthesis and secretion in cultured brain cells by injury-related factors. J Biol Chem 1993; 268 (5) 3720-3727
  • 111 Guttridge DC, Lau AL, Cunningham DD. Protease nexin-1, a thrombin inhibitor, is regulated by interleukin-1 and dexamethasone in normal human fibroblasts. J Biol Chem 1993; 268 (25) 18966-18974
  • 112 Abdul S, Leebeek FW, Rijken DC, Uitte de Willige S. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences. Blood 2016; 127 (5) 538-545
  • 113 Kager LM, Weehuizen TA, Wiersinga WJ , et al. Endogenous α2-antiplasmin is protective during severe gram-negative sepsis (melioidosis). Am J Respir Crit Care Med 2013; 188 (8) 967-975
  • 114 Dalli J, Norling LV, Montero-Melendez T , et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med 2014; 6 (1) 27-42
  • 115 de Boer JP, Creasey AA, Chang A , et al. Alpha-2-macroglobulin functions as an inhibitor of fibrinolytic, clotting, and neutrophilic proteinases in sepsis: studies using a baboon model. Infect Immun 1993; 61 (12) 5035-5043
  • 116 Humphries SE, Cook M, Dubowitz M, Stirling Y, Meade TW. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1987; 1 (8548) 1452-1455
  • 117 Danesh J, Lewington S, Thompson SG , et al; Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005; 294 (14) 1799-1809
  • 118 Manocha S, Russell JA, Sutherland AM, Wattanathum A, Walley KR. Fibrinogen-beta gene haplotype is associated with mortality in sepsis. J Infect 2007; 54 (6) 572-577
  • 119 Biswas A, Tiwari AK, Ranjan R , et al. Prothrombotic polymorphisms, mutations, and their association with pediatric non-cardioembolic stroke in Asian-Indian patients. Ann Hematol 2009; 88 (5) 473-478
  • 120 Camilleri RS, Cohen H. No association between pulmonary embolism or deep vein thrombosis and the -455G/A beta-fibrinogen gene polymorphism. Blood Coagul Fibrinolysis 2005; 16 (3) 193-198
  • 121 van Hylckama Vlieg A, Rosendaal FR. High levels of fibrinogen are associated with the risk of deep venous thrombosis mainly in the elderly. J Thromb Haemost 2003; 1 (12) 2677-2678
  • 122 Standeven KF, Grant PJ, Carter AM, Scheiner T, Weisel JW, Ariëns RA. Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: effects on fibrin structure and function. Circulation 2003; 107 (18) 2326-2330
  • 123 Kovar FM, Marsik C, Jilma B , et al. The fibrinogen -148 C/T polymorphism influences inflammatory response in experimental endotoxemia in vivo. Thromb Res 2007; 120 (5) 727-731
  • 124 Rubattu S, Speranza R, Ferrari M , et al. A role of TNF-alpha gene variant on juvenile ischemic stroke: a case-control study. Eur J Neurol 2005; 12 (12) 989-993
  • 125 Foley JH, Kim PY, Mutch NJ, Gils A. Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost 2013; 11 (Suppl. 01) 306-315
  • 126 Henry M, Aubert H, Morange PE , et al. Identification of polymorphisms in the promoter and the 3′ region of the TAFI gene: evidence that plasma TAFI antigen levels are strongly genetically controlled. Blood 2001; 97 (7) 2053-2058
  • 127 Emonts M, de Bruijne EL, Guimarães AH , et al. Thrombin-activatable fibrinolysis inhibitor is associated with severity and outcome of severe meningococcal infection in children. J Thromb Haemost 2008; 6 (2) 268-276
  • 128 Zeerleder S, Schroeder V, Hack CE, Kohler HP, Wuillemin WA. TAFI and PAI-1 levels in human sepsis. Thromb Res 2006; 118 (2) 205-212
  • 129 Kremer Hovinga JA, Franco RF, Zago MA, Ten Cate H, Westendorp RG, Reitsma PH. A functional single nucleotide polymorphism in the thrombin-activatable fibrinolysis inhibitor (TAFI) gene associates with outcome of meningococcal disease. J Thromb Haemost 2004; 2 (1) 54-57
  • 130 Muszbek L, Bagoly Z, Bereczky Z, Katona E. The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovasc Hematol Agents Med Chem 2008; 6 (3) 190-205
  • 131 Sakata Y, Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 1982; 69 (3) 536-542
  • 132 Valnickova Z, Enghild JJ. Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking to fibrin. J Biol Chem 1998; 273 (42) 27220-27224
  • 133 Ariëns RA, Lai TS, Weisel JW, Greenberg CS, Grant PJ. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 2002; 100 (3) 743-754
  • 134 Ariëns RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000; 96 (3) 988-995
  • 135 Kovar FM, Marsik CL, Jilma B , et al. The inflammatory response is influenced by FXIII VAL 34 LEU polymorphism in a human LPS model. Wien Klin Wochenschr 2009; 121 (15-16) 515-519
  • 136 Zeerleder S, Schroeder V, Lämmle B, Wuillemin WA, Hack CE, Kohler HP. Factor XIII in severe sepsis and septic shock. Thromb Res 2007; 119 (3) 311-318
  • 137 Egbring R, Schmidt W, Fuchs G, Havemann K. Demonstration of granulocytic proteases in plasma of patients with acute leukemia and septicemia with coagulation defects. Blood 1977; 49 (2) 219-231
  • 138 Holst FG, Hemmer CJ, Foth C, Seitz R, Egbring R, Dietrich M. Low levels of fibrin-stabilizing factor (factor XIII) in human Plasmodium falciparum malaria: correlation with clinical severity. Am J Trop Med Hyg 1999; 60 (1) 99-104
  • 139 Härtel C, König I, Köster S , et al. Genetic polymorphisms of hemostasis genes and primary outcome of very low birth weight infants. Pediatrics 2006; 118 (2) 683-689
  • 140 Van Hylckama Vlieg A, Komanasin N, Ariëns RA , et al. Factor XIII Val34Leu polymorphism, factor XIII antigen levels and activity and the risk of deep venous thrombosis. Br J Haematol 2002; 119 (1) 169-175
  • 141 Kopyta IA, Emich-Widera E, Balcerzyk A , et al. Polymorphisms of genes encoding coagulation factors II, V, VII, and XIII in relation to pediatric ischemic stroke: family-based and case-control study. Neurologist 2012; 18 (5) 282-286
  • 142 Franco RF, Reitsma PH, Lourenço D , et al. Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb Haemost 1999; 81 (5) 676-679
  • 143 Davila S, Wright VJ, Khor CC , et al; International Meningococcal Genetics Consortium. Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat Genet 2010; 42 (9) 772-776
  • 144 Rautanen A, Mills TC, Gordon AC , et al; ESICM/ECCRN GenOSept Investigators. Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir Med 2015; 3 (1) 53-60