Rofo 2017; 189(S 01): S1-S124
DOI: 10.1055/s-0037-1600409
Vortrag (Wissenschaft)
Neuroradiologie
Georg Thieme Verlag KG Stuttgart · New York

Diagnostic accuracy for detection of intracranial hemorrhage using automatic tube current modulation and advanced modeled iterative reconstruction in unenhanced head single-energy and dual-energy CT

J Scholtz
1   Massachusetts General Hospital, Division of Cardiovascular Imaging, Boston
,
J Wichmann
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
,
D Bennett
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
,
D Leithner
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
,
M Albrecht
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
,
A Bucher
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
,
R Bauer
3   Kantonspital St. Gallen, Klinik für Radiologie und Nuklearmedizin, St. Gallen/Schweiz
,
T Vogl
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
,
B Bodelle
2   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt/Main
› Author Affiliations
Further Information

Publication History

Publication Date:
23 March 2017 (online)

 

Zielsetzung:

To determine diagnostic accuracy for detection of intracranial hemorrhage (ICH), image quality, and radiation dose of low-dose single-energy (SE) and dual-energy (DE) unenhanced head computed tomografy (CT) on third-generation dual-source CT.

Material und Methodik:

123 patients with suspected ICH were examined on a 192-slice dual-source CT. Standard-dose SE (120-kV,Group A,n = 36) and DE (80-/Sn150-kVp,Group B,n = 30) images were compared with low-dose SE (Group C,n = 32) and DE (Group D,n = 25) using automated-tube-current-modulation (ATCM). Advanced-modeled-iterative-reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three blinded readers. Quantitative and qualitative image quality was assessed. Interobserver agreement was calculated using Fleiss' Kappa. Radiation dose was assessed as dose-length product (DLP).

Ergebnisse:

Detection of ICH was excellent (sensitivity,94.9 – 100%; specificity,94.7 – 100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83 – 0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray-matter-to-white-matter (GM-WM) contrast (p≤0.014), whereas highest GM-WM CNR was observed in low-dose DE-CT (all,p≥0.057). Lowest posterior-fossa-artifact-index was measured for standard-dose DE-CT with significantly lower values compared to low-dose protocols (both p≤0.034). Delineation of ventricular margins and subarachnoidal spaces sharpness were rated excellent in all protocols (p≥0.096). Low-dose SE lowered radiation dose by 26% (DLP, 575.0 ± 72.3mGy*cm vs. 771.4 ± 146.8mGy*cm, p < 0.001) and by 24% in DE (DLP, 587.0 ± 103.2mGy*cm vs. 770.6 ± 90.2mGy*cm, p < 0.001). No significant differences were observed between low-dose protocols (p = 1.00).

Schlussfolgerungen:

Low-dose unenhanced head SE and DE-CT using ATCM and ADMIRE provide excellent diagnostic accuracy for detection of ICH with good quantitative and qualitative image quality in third-generation dual-source CT while allowing for significant radiation dose reduction.