Clin Colon Rectal Surg 2018; 31(03): 192-198
DOI: 10.1055/s-0037-1602239
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of the Gut Microbiome in Colorectal Cancer

Grace Y. Chen
1   Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
01 April 2018 (online)

Abstract

There is increasing evidence that the gut microbiome, which consists of trillions of microbes representing over 1,000 species of bacteria with over 3 million genes, significantly impacts intestinal health and disease. The gut microbiota not only is capable of promoting intestinal homeostasis and antitumor responses but can also contribute to chronic dysregulated inflammation as well as have genotoxic effects that lead to carcinogenesis. Whether the gut microbiota maintains health or promotes colon cancer may ultimately depend on the composition of the gut microbiome and the balance within the microbial community of protective and detrimental bacterial populations. Disturbances in the normal balanced state of a healthful microbiome, known as dysbiosis, have been observed in patients with colorectal cancer (CRC); however, whether these alterations precede and cause CRC remains to be determined. Nonetheless, studies in mice strongly suggest that the gut microbiota can modulate susceptibility to CRC, and therefore may serve as both biomarkers and therapeutic targets.

 
  • References

  • 1 Chen GY, Shaw MH, Redondo G, Núñez G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 2008; 68 (24) 10060-10067
  • 2 Couturier-Maillard A, Secher T, Rehman A. , et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013; 123 (02) 700-711
  • 3 Hu B, Elinav E, Huber S. , et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 2010; 107 (50) 21635-21640
  • 4 Zaki MH, Lamkanfi M, Kanneganti TD. The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol 2011; 32 (04) 171-179
  • 5 Zaki MH, Vogel P, Malireddi RK. , et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 2011; 20 (05) 649-660
  • 6 Chen GY, Liu M, Wang F, Bertin J, Núñez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 2011; 186 (12) 7187-7194
  • 7 Zhan Y, Chen PJ, Sadler WD. , et al. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res 2013; 73 (24) 7199-7210
  • 8 Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111 (06) 2247-2252
  • 9 Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 2013; 13 (06) 869-874
  • 10 Singh N, Gurav A, Sivaprakasam S. , et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40 (01) 128-139
  • 11 Belcheva A, Irrazabal T, Robertson SJ. , et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 2014; 158 (02) 288-299
  • 12 Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12 (10) 661-672
  • 13 Ochsenkühn T, Bayerdörffer E, Meining A. , et al. Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer 1999; 85 (08) 1664-1669
  • 14 Cao H, Luo S, Xu M. , et al. The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling. Fam Cancer 2014; 13 (04) 563-571
  • 15 Swidsinski A, Khilkin M, Kerjaschki D. , et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 1998; 115 (02) 281-286
  • 16 Hinoi T, Akyol A, Theisen BK. , et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 2007; 67 (20) 9721-9730
  • 17 Grivennikov SI, Wang K, Mucida D. , et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491 (7423): 254-258
  • 18 Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007; 317 (5834): 124-127
  • 19 Ivanov II, Atarashi K, Manel N. , et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139 (03) 485-498
  • 20 Atarashi K, Tanoue T, Ando M. , et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163 (02) 367-380
  • 21 Tosolini M, Kirilovsky A, Mlecnik B. , et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011; 71 (04) 1263-1271
  • 22 Wu S, Rhee KJ, Albesiano E. , et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15 (09) 1016-1022
  • 23 Atarashi K, Tanoue T, Oshima K. , et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500 (7461): 232-236
  • 24 Atarashi K, Tanoue T, Shima T. , et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331 (6015): 337-341
  • 25 Terme M, Pernot S, Marcheteau E. , et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 2013; 73 (02) 539-549
  • 26 Geis AL, Fan H, Wu X. , et al. Regulatory T-cell response to Enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 2015; 5 (10) 1098-1109
  • 27 Smith PM, Howitt MR, Panikov N. , et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341 (6145): 569-573
  • 28 Furusawa Y, Obata Y, Fukuda S. , et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504 (7480): 446-450
  • 29 Zhang X, Kelaria S, Kerstetter J, Wang J. The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol 2015; 6 (03) 307-313
  • 30 Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 2011; 60 (07) 909-918
  • 31 Man SM, Zhu Q, Zhu L. , et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 2015; 162 (01) 45-58
  • 32 Hu B, Elinav E, Huber S. , et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 2013; 110 (24) 9862-9867 [Corrected in “Proc Natl Acad Sci U S A 2013;110(31):12852” (Note: Wunderlich, Claudia [added]; Wunderlich, Thomas [added])]
  • 33 Zackular JP, Baxter N, Chen GY, Schloss PD. Manipulation of the gut microbiota reveals role in colon tumorigenesis. mSphere 2015; 1 (01) e00001-e00015
  • 34 Zackular JP, Baxter NT, Iverson KD. , et al. The gut microbiome modulates colon tumorigenesis. MBio 2013; 4 (06) e00692-e13
  • 35 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486 (7402): 207-214
  • 36 Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature 2014; 509 (7500): 357-360
  • 37 Sobhani I, Tap J, Roudot-Thoraval F. , et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011; 6 (01) e16393
  • 38 Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 2013; 8 (08) e70803
  • 39 Yasuda K, Oh K, Ren B. , et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 2015; 17 (03) 385-391
  • 40 Momozawa Y, Deffontaine V, Louis E, Medrano JF. Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human. PLoS One 2011; 6 (02) e16952
  • 41 Durbán A, Abellán JJ, Jiménez-Hernández N. , et al. Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol 2011; 61 (01) 123-133
  • 42 Eckburg PB, Bik EM, Bernstein CN. , et al. Diversity of the human intestinal microbial flora. Science 2005; 308 (5728): 1635-1638
  • 43 Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol 2015; 6: 20
  • 44 Marchesi JR, Dutilh BE, Hall N. , et al. Towards the human colorectal cancer microbiome. PLoS One 2011; 6 (05) e20447
  • 45 Zackular JP, Rogers MA, Ruffin IV MT, Schloss PD. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila) 2014; 7 (11) 1112-1121
  • 46 Baxter NT, Ruffin IV MT, Rogers MA, Schloss PD. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med 2016; 8 (01) 37
  • 47 Zeller G, Tap J, Voigt AY. , et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014; 10: 766
  • 48 Münger K, Scheffner M, Huibregtse JM, Howley PM. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 1992; 12: 197-217
  • 49 Arthur JC, Perez-Chanona E, Mühlbauer M. , et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338 (6103): 120-123
  • 50 Nougayrède JP, Homburg S, Taieb F. , et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313 (5788): 848-851
  • 51 Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 2010; 107 (25) 11537-11542
  • 52 Kostic AD, Gevers D, Pedamallu CS. , et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22 (02) 292-298
  • 53 Kostic AD, Chun E, Robertson L. , et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14 (02) 207-215
  • 54 Mima K, Nishihara R, Qian ZR. , et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2015; ; (Aug): 26
  • 55 Mima K, Sukawa Y, Nishihara R. , et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015; 1 (05) 653-661
  • 56 Galon J, Costes A, Sanchez-Cabo F. , et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313 (5795): 1960-1964
  • 57 Bachrach G, Ianculovici C, Naor R, Weiss EI. Fluorescence based measurements of Fusobacterium nucleatum coaggregation and of fusobacterial attachment to mammalian cells. FEMS Microbiol Lett 2005; 248 (02) 235-240
  • 58 Gur C, Ibrahim Y, Isaacson B. , et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015; 42 (02) 344-355
  • 59 Hettich RL, Pan C, Chourey K, Giannone RJ. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 2013; 85 (09) 4203-4214
  • 60 Iida N, Dzutsev A, Stewart CA. , et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342 (6161): 967-970
  • 61 Viaud S, Saccheri F, Mignot G. , et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342 (6161): 971-976
  • 62 Sivan A, Corrales L, Hubert N. , et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350 (6264): 1084-1089