Journal of Pediatric Neurology 2017; 15(03): 105-114
DOI: 10.1055/s-0037-1602822
Review Article
Georg Thieme Verlag KG Stuttgart · New York

New Genes for Epilepsy–Autism Comorbidity

Atsushi Ishii
1   Department of Pediatrics and Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
,
Shinichi Hirose
1   Department of Pediatrics and Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
› Author Affiliations
Further Information

Publication History

03 March 2017

19 March 2017

Publication Date:
11 May 2017 (online)

Abstract

Similar genetic abnormalities have been demonstrated for epilepsy and autism spectrum disorder (ASD). Genetic syndromes, such as fragile X syndrome and tuberous sclerosis, also have high rates of comorbidity with epilepsy and ASD. Furthermore, next-generation sequencing has identified common genetic abnormalities in epilepsy and ASD, and recurrent de novo gene alterations can be recognized as mutations if there is sufficient evidence for pathogenicity. Such mutations occur in SCN2A and GRIN2B. SCN2A encodes the α2 subunit of the Nav1.2 neuronal voltage-gated Na+ channel, which is mutated in several genetically mediated epilepsies. GRIN2B encodes a subtype of the N-methyl-D-aspartate glutamate receptor and is mutated in epileptic encephalopathies, which often present with features of ASD. In addition, KCNT1 encodes the Na+-dependent K+ channel known as Slack. Mutations in KCNT1 produce several epilepsy phenotypes, including autosomal dominant frontal lobe epilepsy, which often includes features of ASD. Slack also has an intracellular fragile X mental retardation protein-binding domain, which is significant in its relationship with intellectual disabilities. Furthermore, DEPDC5 mutations produce autosomal dominant familial focal epilepsy with variable foci and may contribute to ASD. DEPDC5 encodes a regulator of the mechanistic target of rapamycin (mTOR) pathway, which is also affected by tuberous sclerosis mutations, suggesting that “mTORopathy” may underlie both epilepsy and ASD. Mutations in PCDH19 also produce an epilepsy syndrome that exclusively affects heterozygous females and is associated with ASD. The genetic similarities between ASD and epilepsy provide insight into the pathological molecular mechanisms of both conditions and therefore may be useful for understanding clinical outcomes.

 
  • References

  • 1 Lo-Castro A, Curatolo P. Epilepsy associated with autism and attention deficit hyperactivity disorder: is there a genetic link?. Brain Dev 2014; 36 (03) 185-193
  • 2 Noebels JL. Single-gene determinants of epilepsy comorbidity. Cold Spring Harb Perspect Med 2015; 5 (11) a022756 . Doi: 10.1101/cshperspect.a022756
  • 3 Galizia EC, Srikantha M, Palmer R. , et al. Array comparative genomic hybridization: results from an adult population with drug-resistant epilepsy and co-morbidities. Eur J Med Genet 2012; 55 (05) 342-348
  • 4 Olson H, Shen Y, Avallone J. , et al. Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; 75 (06) 943-958
  • 5 Pandolfo M. Pediatric epilepsy genetics. Curr Opin Neurol 2013; 26 (02) 137-145
  • 6 Rosti RO, Sadek AA, Vaux KK, Gleeson JG. The genetic landscape of autism spectrum disorders. Dev Med Child Neurol 2014; 56 (01) 12-18
  • 7 Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251: 95-112
  • 8 Li X, Zou H, Brown WT. Genes associated with autism spectrum disorder. Brain Res Bull 2012; 88 (06) 543-552
  • 9 Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics 2004; 113 (05) e472-e486
  • 10 Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 2011; 1380: 42-77
  • 11 Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: disorders with a shared biology. Epilepsy Behav 2015; 47: 191-201
  • 12 Murdoch JD, State MW. Recent developments in the genetics of autism spectrum disorders. Curr Opin Genet Dev 2013; 23 (03) 310-315
  • 13 Mitchell KJ. The genetics of neurodevelopmental disease. Curr Opin Neurobiol 2011; 21 (01) 197-203
  • 14 Ben Zeev Ghidoni B. Rett syndrome. Child Adolesc Psychiatr Clin N Am 2007; 16 (03) 723-743
  • 15 Kidd SA, Lachiewicz A, Barbouth D. , et al. Fragile X syndrome: a review of associated medical problems. Pediatrics 2014; 134 (05) 995-1005
  • 16 Curatolo P, Moavero R, Roberto D, Graziola F. Genotype/phenotype correlations in tuberous sclerosis complex. Semin Pediatr Neurol 2015; 22 (04) 259-273
  • 17 Allen AS, Berkovic SF, Cossette P. , et al; Epi4K Consortium; Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013; 501 (7466): 217-221
  • 18 Sanders SJ, Murtha MT, Gupta AR. , et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485 (7397): 237-241
  • 19 O'Roak BJ, Vives L, Girirajan S. , et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485 (7397): 246-250
  • 20 O'Roak BJ, Vives L, Fu W. , et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012; 338 (6114): 1619-1622
  • 21 Neale BM, Kou Y, Liu L. , et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485 (7397): 242-245
  • 22 O'Roak BJ, Deriziotis P, Lee C. , et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43 (06) 585-589
  • 23 Hildebrand MS, Myers CT, Carvill GL. , et al. A targeted resequencing gene panel for focal epilepsy. Neurology 2016; 86 (17) 1605-1612
  • 24 Helbig I. Genetic causes of generalized epilepsies. Semin Neurol 2015; 35 (03) 288-292
  • 25 Richards S, Aziz N, Bale S. , et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 26 Shi X, Yasumoto S, Kurahashi H. , et al. Clinical spectrum of SCN2A mutations. Brain Dev 2012; 34 (07) 541-545
  • 27 Shi X, Yasumoto S, Nakagawa E, Fukasawa T, Uchiya S, Hirose S. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev 2009; 31 (10) 758-762
  • 28 Smigiel R, Kostrzewa G, Kosinska J. , et al. Further evidence for GRIN2B mutation as the cause of severe epileptic encephalopathy. Am J Med Genet A 2016; 170 (12) 3265-3270
  • 29 Lemke JR, Hendrickx R, Geider K. , et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 2014; 75 (01) 147-154
  • 30 Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF. Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 2016; 132 (02) 115-121
  • 31 Endele S, Rosenberger G, Geider K. , et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42 (11) 1021-1026
  • 32 Veeramah KR, O'Brien JE, Meisler MH. , et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012; 90 (03) 502-510
  • 33 Kearney JA, Plummer NW, Smith MR. , et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 2001; 102 (02) 307-317
  • 34 Misra SN, Kahlig KM, George Jr AL. Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia 2008; 49 (09) 1535-1545
  • 35 Yamakawa K. Epilepsy and sodium channel gene mutations: gain or loss of function?. Neuroreport 2005; 16 (01) 1-3
  • 36 Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol Psychiatry 2017 . Doi:10.1016/j.biopsych.2017.01.009
  • 37 Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T. Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res 2011; 135 (3-4): 228-240
  • 38 Ryley Parrish R, Albertson AJ, Buckingham SC. , et al. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience 2013; 248: 602-619
  • 39 Swanger SA, Chen W, Wells G. , et al. Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 2016; 99 (06) 1261-1280
  • 40 Lossin C. A catalog of SCN1A variants. Brain Dev 2009; 31 (02) 114-130
  • 41 Schmunk G, Gargus JJ. Channelopathy pathogenesis in autism spectrum disorders. Front Genet 2013; 4: 222 . Doi: 10.3389/fgene.2013.00222
  • 42 Barcia G, Fleming MR, Deligniere A. , et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012; 44 (11) 1255-1259
  • 43 Heron SE, Smith KR, Bahlo M. , et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 2012; 44 (11) 1188-1190
  • 44 Kingwell K. Genetics: mutations in potassium channel KCNT1-a novel driver of epilepsy pathogenesis. Nat Rev Neurol 2012; 8 (12) 658 . Doi: 10.1038/nrneurol.2012.229
  • 45 Aminkeng F. KCNT1 mutations in ADNFLE and MMPSI: a new driver in the etiology and pathophysiology of early-onset epileptic syndromes. Clin Genet 2013; 83 (04) 319-320
  • 46 Dibbens LM, de Vries B, Donatello S. , et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45 (05) 546-551
  • 47 Ishida S, Picard F, Rudolf G. , et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45 (05) 552-555
  • 48 Brown MR, Kronengold J, Gazula VR. , et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci 2010; 13 (07) 819-821
  • 49 Bar-Peled L, Chantranupong L, Cherniack AD. , et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340 (6136): 1100-1106
  • 50 Kaczmarek LK. Slack, Slick and sodium-activated potassium channels. ISRN Neurosci 2013; 2013 (2013): 2013 . Doi: 10.1155/2013/354262
  • 51 Kim GE, Kaczmarek LK. Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 2014; 8: 209 . Doi: 10.3389/fncel.2014.00209
  • 52 Kurahashi H, Hirose S. Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. . In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews (R) [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2017
  • 53 Milligan CJ, Li M, Gazina EV. , et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 2014; 75 (04) 581-590
  • 54 Ishii A, Shioda M, Okumura A. , et al. A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene 2013; 531 (02) 467-471
  • 55 Weckhuysen S, Marsan E, Lambrecq V. , et al. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia 2016; 57 (06) 994-1003
  • 56 Ricos MG, Hodgson BL, Pippucci T. , et al; Epilepsy Electroclinical Study Group. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol 2016; 79 (01) 120-131
  • 57 Baldassari S, Licchetta L, Tinuper P, Bisulli F, Pippucci T. GATOR1 complex: the common genetic actor in focal epilepsies. J Med Genet 2016; 53 (08) 503-510
  • 58 Peng M, Yin N, Li MO. SZT2 dictates GATOR control of mTORC1 signalling. Nature 2017; 543 (7645): 433-437
  • 59 Falcone M, Yariz KO, Ross DB, Foster II J, Menendez I, Tekin M. An amino acid deletion inSZT2 in a family with non-syndromic intellectual disability. PLoS One 2013; 8 (12) e82810 . Doi: 10.1371/journal.pone.0082810
  • 60 Basel-Vanagaite L, Hershkovitz T, Heyman E. , et al. Biallelic SZT2 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus callosum. Am J Hum Genet 2013; 93 (03) 524-529
  • 61 Venkatesan C, Angle B, Millichap JJ. Early-life epileptic encephalopathy secondary to SZT2 pathogenic recessive variants. Epileptic Disord 2016; 18 (02) 195-200
  • 62 French JA, Lawson JA, Yapici Z. , et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016; 388 (10056): 2153-2163
  • 63 Curatolo P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 2015; 52 (03) 281-289
  • 64 Curatolo P, Moavero R. mTOR inhibitors as a new therapeutic option for epilepsy. Expert Rev Neurother 2013; 13 (06) 627-638
  • 65 Gipson TT, Gerner G, Wilson MA, Blue ME, Johnston MV. Potential for treatment of severe autism in tuberous sclerosis complex. World J Clin Pediatr 2013; 2 (03) 16-25
  • 66 Hwang SK, Lee JH, Yang JE. , et al. Everolimus improves neuropsychiatric symptoms in a patient with tuberous sclerosis carrying a novel TSC2 mutation. Mol Brain 2016; 9 (01) 56 . Doi: 10.1186/s13041-016-0222-6.
  • 67 Dibbens LM, Tarpey PS, Hynes K. , et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 2008; 40 (06) 776-781
  • 68 Higurashi N, Nakamura M, Sugai M. , et al. PCDH19-related female-limited epilepsy: further details regarding early clinical features and therapeutic efficacy. Epilepsy Res 2013; 106 (1-2): 191-199
  • 69 Higurashi N, Shi X, Yasumoto S. , et al. PCDH19 mutation in Japanese females with epilepsy. Epilepsy Res 2012; 99 (1-2): 28-37
  • 70 Higurashi N, Takahashi Y, Kashimada A. , et al. Immediate suppression of seizure clusters by corticosteroids in PCDH19 female epilepsy. Seizure 2015; 27: 1-5
  • 71 Camacho A, Simón R, Sanz R, Viñuela A, Martínez-Salio A, Mateos F. Cognitive and behavioral profile in females with epilepsy with PDCH19 mutation: two novel mutations and review of the literature. Epilepsy Behav 2012; 24 (01) 134-137
  • 72 Hynes K, Tarpey P, Dibbens LM. , et al. Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. J Med Genet 2010; 47 (03) 211-216
  • 73 Emond MR, Biswas S, Jontes JD. Protocadherin-19 is essential for early steps in brain morphogenesis. Dev Biol 2009; 334 (01) 72-83
  • 74 Biswas S, Emond MR, Jontes JD. Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. J Cell Biol 2010; 191 (05) 1029-1041
  • 75 Emond MR, Biswas S, Blevins CJ, Jontes JD. A complex of protocadherin-19 and N-cadherin mediates a novel mechanism of cell adhesion. J Cell Biol 2011; 195 (07) 1115-1121
  • 76 Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J Cell Biol 2006; 174 (02) 301-313
  • 77 Morishita H, Umitsu M, Murata Y. , et al. Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. J Biol Chem 2006; 281 (44) 33650-33663
  • 78 Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr 2014; 2: 94 . Doi: 10.3389/fped.2014.00094
  • 79 Thiffault I, Farrow E, Smith L. , et al. PCDH19-related epileptic encephalopathy in a male mosaic for a truncating variant. Am J Med Genet A 2016; 170 (06) 1585-1589
  • 80 Terracciano A, Trivisano M, Cusmai R. , et al. PCDH19-related epilepsy in two mosaic male patients. Epilepsia 2016; 57 (03) e51-e55
  • 81 Depienne C, Bouteiller D, Keren B. , et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 2009; 5 (02) e1000381 . Doi: 10.1371/journal.pgen.1000381
  • 82 Tan C, Shard C, Ranieri E. , et al. Mutations of protocadherin 19 in female epilepsy (PCDH19-FE) lead to allopregnanolone deficiency. Hum Mol Genet 2015; 24 (18) 5250-5259
  • 83 Fassio A, Patry L, Congia S. , et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 2011; 20 (12) 2297-2307