CC BY-NC-ND 4.0 · Journal of Child Science 2017; 07(01): e60-e75
DOI: 10.1055/s-0037-1603897
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Pediatric Sepsis: Clinical Considerations

G. Balázs
1   Clinical Center, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
,
S. Szima
2   Department of Pediatrics, Medical Center Coburg, Academic Hospital of the University of Split, Coburg, Germany
,
N. Elek
1   Clinical Center, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
,
P. Dahlem
2   Department of Pediatrics, Medical Center Coburg, Academic Hospital of the University of Split, Coburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

14. Januar 2017

25. April 2017

Publikationsdatum:
26. Juli 2017 (online)

Abstract

Sepsis remains one of the leading causes of childhood mortality today, although survival has substantially improved, thanks to an ever deeper and more thorough understanding of sepsis pathophysiology, developments in vaccination and intensive therapy, and goal-directed therapeutic approaches. The key to successful therapy is early recognition and antibiotic treatment, as well as supportive therapy aimed at correcting circulatory, respiratory, and metabolic derangements as soon as possible. Diagnosis and management of childhood sepsis mainly evolves along the path of studies conducted in adult patients; however, their applicability is limited due to a variability of cardiovascular and immune responses in each age group. In addition to childhood characteristics of hemodynamic responses in sepsis, this review looks at major areas of pediatric sepsis therapy, with the intention of providing bedside clinicians with pointers useful in their day-to-day work.

 
  • References

  • 1 Goldstein B, Giroir B, Randolph A. ; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6 (01) 2-8
  • 2 Cinel I, Dellinger RP. Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis 2007; 20 (04) 345-352
  • 3 Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6: 19-48
  • 4 Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348 (02) 138-150
  • 5 Lederer JA, Rodrick ML, Mannick JA. The effects of injury on the adaptive immune response. Shock 1999; 11 (03) 153-159
  • 6 Payen D, Faivre V, Lukaszewicz AC, Villa F, Goldberg P. Expression of monocyte human leukocyte antigen-DR in relation with sepsis severity and plasma mediators. Minerva Anestesiol 2009; 75 (09) 484-493
  • 7 Wynn J, Cornell TT, Wong HR, Shanley TP, Wheeler DS. The host response to sepsis and developmental impact. Pediatrics 2010; 125 (05) 1031-1041
  • 8 Wheeler DS, Zingarelli B, Wheeler WJ, Wong HR. Novel pharmacologic approaches to the management of sepsis: targeting the host inflammatory response. Recent Pat Inflamm Allergy Drug Discov 2009; 3 (02) 96-112
  • 9 Hazelzet J, Driessen GJA, Abboud P, Wheeler DS, Shanley TP, Wong HR. Sepsis. In: Wheeler DS, Wong HR, Shanley TP. , eds. Pediatric Critical Care Medicine: Basic Science and Clinical Evidence. London: Springer-Verlag; 2007: 1421-1444
  • 10 Wheeler DS, Wong HR, Zingarelli B. Pediatric sepsis - part I: “children are not small adults!”. Open Inflamm J 2011; 4: 4-15
  • 11 Weiss SL, Fitzgerald JC, Pappachan J. , et al; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191 (10) 1147-1157
  • 12 Carcillo JA. Reducing the global burden of sepsis in infants and children: a clinical practice research agenda. Pediatr Crit Care Med 2005; 6 (3, Suppl): S157-S164
  • 13 Odetola FO, Gebremariam A, Freed GL. Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics 2007; 119 (03) 487-494
  • 14 Typpo KV, Petersen NJ, Hallman DM, Markovitz BP, Mariscalco MM. Day 1 multiple organ dysfunction syndrome is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr Crit Care Med 2009; 10 (05) 562-570
  • 15 Kissoon N, Carcillo JA, Espinosa V. , et al; Global Sepsis Initiative Vanguard Center Contributors. World Federation of Pediatric Intensive Care and Critical Care Societies: Global Sepsis Initiative. Pediatr Crit Care Med 2011; 12 (05) 494-503
  • 16 Dellinger RP, Levy MM, Rhodes A. , et al; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41 (02) 580-637
  • 17 Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis*. Pediatr Crit Care Med 2013; 14 (07) 686-693
  • 18 Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebbar KB. Pediatric severe sepsis: current trends and outcomes from the Pediatric Health Information Systems database. Pediatr Crit Care Med 2014; 15 (09) 828-838
  • 19 Butt W. Septic shock. Pediatr Clin North Am 2001; 48 (03) 601-625 , viii
  • 20 Gaines NN, Patel B, Williams EA, Cruz AT. Etiologies of septic shock in a pediatric emergency department population. Pediatr Infect Dis J 2012; 31 (11) 1203-1205
  • 21 Han YY, Carcillo JA, Dragotta MA. , et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics 2003; 112 (04) 793-799
  • 22 Kutko MC, Calarco MP, Flaherty MB. , et al. Mortality rates in pediatric septic shock with and without multiple organ system failure. Pediatr Crit Care Med 2003; 4 (03) 333-337
  • 23 Simmons ML, Durham SH, Carter CW. Pharmacological management of pediatric patients with sepsis. AACN Adv Crit Care 2012; 23 (04) 437-448 , quiz 449–450
  • 24 Bone RC, Balk RA, Cerra FB. , et al; The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101 (06) 1644-1655
  • 25 Levy MM, Fink MP, Marshall JC. , et al; International Sepsis Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29 (04) 530-538
  • 26 Marshall JC. SIRS and MODS: what is their relevance to the science and practice of intensive care?. Shock 2000; 14 (06) 586-589
  • 27 Weiss SL, Parker B, Bullock ME. , et al. Defining pediatric sepsis by different criteria: discrepancies in populations and implications for clinical practice. Pediatr Crit Care Med 2012; 13 (04) e219-e226
  • 28 Argent AC. Recognizing pediatric sepsis: do the concepts help us to focus appropriately?. Pediatr Crit Care Med 2016; 17 (05) 460-461
  • 29 Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet 2013; 381 (9868): 774-775
  • 30 Singer M, Deutschman CS, Seymour CW. , et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 31 Agyeman P, Aebi C, Hirt A. , et al. Predicting bacteremia in children with cancer and fever in chemotherapy-induced neutropenia: results of the prospective multicenter SPOG 2003 FN study. Pediatr Infect Dis J 2011; 30 (07) e114-e119
  • 32 Struthers S, Underhill H, Albersheim S, Greenberg D, Dobson S. A comparison of two versus one blood culture in the diagnosis and treatment of coagulase-negative staphylococcus in the neonatal intensive care unit. J Perinatol 2002; 22 (07) 547-549
  • 33 Isaacman DJ, Karasic RB, Reynolds EA, Kost SI. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J Pediatr 1996; 128 (02) 190-195
  • 34 Kaditis AG, O'Marcaigh AS, Rhodes KH, Weaver AL, Henry NK. Yield of positive blood cultures in pediatric oncology patients by a new method of blood culture collection. Pediatr Infect Dis J 1996; 15 (07) 615-620
  • 35 Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J Pediatr 1996; 129 (02) 275-278
  • 36 Buttery JP. Blood cultures in newborns and children: optimising an everyday test. Arch Dis Child Fetal Neonatal Ed 2002; 87 (01) F25-F28
  • 37 Surdulescu S, Utamsingh D, Shekar R. Phlebotomy teams reduce blood-culture contamination rate and save money. Clin Perform Qual Health Care 1998; 6 (02) 60-62
  • 38 Weinbaum FI, Lavie S, Danek M, Sixsmith D, Heinrich GF, Mills SS. Doing it right the first time: quality improvement and the contaminant blood culture. J Clin Microbiol 1997; 35 (03) 563-565
  • 39 Weinstein MP. Blood culture contamination: persisting problems and partial progress. J Clin Microbiol 2003; 41 (06) 2275-2278
  • 40 Calfee DP, Farr BM. Comparison of four antiseptic preparations for skin in the prevention of contamination of percutaneously drawn blood cultures: a randomized trial. J Clin Microbiol 2002; 40 (05) 1660-1665
  • 41 Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev 2006; 19 (04) 788-802
  • 42 Norberg A, Christopher NC, Ramundo ML, Bower JR, Berman SA. Contamination rates of blood cultures obtained by dedicated phlebotomy vs intravenous catheter. JAMA 2003; 289 (06) 726-729
  • 43 Hardy DJ, Hulbert BB, Migneault PC. Time to detection of positive BacT/Alert blood cultures and lack of need for routine subculture of 5- to 7-day negative cultures. J Clin Microbiol 1992; 30: 2743-2745
  • 44 Huang AH, Yan JJ, Wu JJ. Comparison of five days versus seven days of incubation for detection of positive blood cultures by the Bactec 9240 system. Eur J Clin Microbiol Infect Dis 1998; 17 (09) 637-641
  • 45 Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children's hospital. Pediatrics 2007; 119 (05) 891-896
  • 46 Dark P, Dunn G, Chadwick P. , et al. The clinical diagnostic accuracy of rapid detection of healthcare-associated bloodstream infection in intensive care using multipathogen real-time PCR technology. BMJ Open 2011; 1 (01) e000181
  • 47 Tsalik EL, Jones D, Nicholson B. , et al. Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis. J Clin Microbiol 2010; 48 (01) 26-33
  • 48 Lucignano B, Ranno S, Liesenfeld O. , et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol 2011; 49 (06) 2252-2258
  • 49 Dark PM, Dean P, Warhurst G. Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection. Crit Care 2009; 13 (04) 217
  • 50 Lehmann LE, Hunfeld KP, Emrich T. , et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol (Berl) 2008; 197 (03) 313-324
  • 51 von Lilienfeld-Toal M, Lehmann LE, Raadts AD. , et al. Utility of a commercially available multiplex real-time PCR assay to detect bacterial and fungal pathogens in febrile neutropenia. J Clin Microbiol 2009; 47 (08) 2405-2410
  • 52 Wellinghausen N, Kochem AJ, Disqué C. , et al. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol 2009; 47 (09) 2759-2765
  • 53 Westh H, Lisby G, Breysse F. , et al. Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect 2009; 15 (06) 544-551
  • 54 Watson RS, Carcillo JA. Scope and epidemiology of pediatric sepsis. Pediatr Crit Care Med 2005; 6 (3, Suppl): S3-S5
  • 55 Aneja R, Carcillo J. Differences between adult and pediatric septic shock. Minerva Anestesiol 2011; 77 (10) 986-992
  • 56 Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987; 15 (10) 923-929
  • 57 Brierley J, Carcillo JA, Choong K. , et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 2009; 37 (02) 666-688
  • 58 Practice parameters for hemodynamic support of sepsis in adults with sepsis. Task force of the American College of Critical Care Medicine, Society of Critical Care Medicine. Crit Care Med 1999; 27: 639-660
  • 59 Parker MM, Shelhamer JH, Bacharach SL. , et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100 (04) 483-490
  • 60 Pollack MM, Fields AI, Ruttimann UE. Sequential cardiopulmonary variables of infants and children in septic shock. Crit Care Med 1984; 12 (07) 554-559
  • 61 Ceneviva G, Paschall JA, Maffei F, Carcillo JA. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 1998; 102 (02) e19
  • 62 Feltes TF, Pignatelli R, Kleinert S, Mariscalco MM. Quantitated left ventricular systolic mechanics in children with septic shock utilizing noninvasive wall-stress analysis. Crit Care Med 1994; 22 (10) 1647-1658
  • 63 Pollack MM, Ruttimann UE, Getson PR. Pediatric risk of mortality (PRISM) score. Crit Care Med 1988; 16 (11) 1110-1116
  • 64 Dugas MA, Proulx F, de Jaeger A, Lacroix J, Lambert M. Markers of tissue hypoperfusion in pediatric septic shock. Intensive Care Med 2000; 26 (01) 75-83
  • 65 Nguyen HB, Rivers EP, Knoblich BP. , et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004; 32 (08) 1637-1642
  • 66 Arnold RC, Shapiro NI, Jones AE. , et al; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock 2009; 32 (01) 35-39
  • 67 Scott HF, Brou L, Deakyne SJ, Fairclough DL, Kempe A, Bajaj L. Lactate clearance and normalization and prolonged organ dysfunction in pediatric sepsis. J Pediatr 2016; 170: 149-55.e1 , 4
  • 68 de Oliveira CF, de Oliveira DS, Gottschald AF. , et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med 2008; 34 (06) 1065-1075
  • 69 Schiffmann H, Erdlenbruch B, Singer D. , et al. Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 2002; 16 (05) 592-597
  • 70 Deep A, Goonasekera CD, Wang Y, Brierley J. Evolution of haemodynamics and outcome of fluid-refractory septic shock in children. Intensive Care Med 2013; 39 (09) 1602-1609
  • 71 Brierley J, Peters MJ. Distinct hemodynamic patterns of septic shock at presentation to pediatric intensive care. Pediatrics 2008; 122 (04) 752-759
  • 72 Martin GS, Eaton S, Mealer M, Moss M. Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 2005; 9 (02) R74-R82
  • 73 Boehne M, Baustert M, Paetzel V. , et al. Determination of cardiac output by ultrasound dilution technique in infants and children: a validation study against direct Fick principle. Br J Anaesth 2014; 112 (03) 469-476
  • 74 Wongsirimetheekul T, Khositseth A, Lertbunrian R. Non-invasive cardiac output assessment in critically ill paediatric patients. Acta Cardiol 2014; 69 (02) 167-173
  • 75 Crittendon III I, Dreyer WJ, Decker JA, Kim JJ. Ultrasound dilution: an accurate means of determining cardiac output in children. Pediatr Crit Care Med 2012; 13 (01) 42-46
  • 76 Fernandez EG, Green TP, Sweeney M. Low inferior vena caval catheters for hemodynamic and pulmonary function monitoring in pediatric critical care patients. Pediatr Crit Care Med 2004; 5 (01) 14-18
  • 77 Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP. Incidence and short-term outcome of acute lung injury in mechanically ventilated children. Eur Respir J 2003; 22 (06) 980-985
  • 78 Kleinman ME, Chameides L, Schexnayder SM. , et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (18) (Suppl. 03) S876-S908
  • 79 Asfar P, Calzia E, Huber-Lang M, Ignatius A, Radermacher P. Hyperoxia during septic shock--Dr. Jekyll or Mr. Hyde?. Shock 2012; 37 (01) 122-123
  • 80 Cam BV, Tuan DT, Fonsmark L. , et al. Randomized comparison of oxygen mask treatment vs. nasal continuous positive airway pressure in dengue shock syndrome with acute respiratory failure. J Trop Pediatr 2002; 48 (06) 335-339
  • 81 Khilnani P, Singhi S, Lodha R. , et al. Pediatric Sepsis Guidelines: summary for resource-limited countries. Indian J Crit Care Med 2010; 14 (01) 41-52
  • 82 International consensus conferences in intensive care medicine: ventilator-associated Lung Injury in ARDS. Am J Respir Crit Care Med 1999; 160 (06) 2118-2124
  • 83 Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 2009; 37 (08) 2448-2454
  • 84 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. ; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 85 Rotta AT, Steinhorn DM. Is permissive hypercapnia a beneficial strategy for pediatric acute lung injury?. Respir Care Clin N Am 2006; 12 (03) 371-387
  • 86 Santschi M, Jouvet P, Leclerc F. , et al; PALIVE Investigators; Pediatric Acute Lung Injury and Sepsis Investigators Network (PALISI); European Society of Pediatric and Neonatal Intensive Care (ESPNIC). Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med 2010; 11 (06) 681-689
  • 87 Ben Jaballah N, Khaldi A, Mnif K. , et al. High-frequency oscillatory ventilation in pediatric patients with acute respiratory failure. Pediatr Crit Care Med 2006; 7 (04) 362-367
  • 88 Arnold JH, Hanson JH, Toro-Figuero LO, Gutiérrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 1994; 22 (10) 1530-1539
  • 89 Randolph AG, Meert KL, O'Neil ME. , et al; Pediatric Acute Lung Injury and Sepsis Investigators Network. The feasibility of conducting clinical trials in infants and children with acute respiratory failure. Am J Respir Crit Care Med 2003; 167 (10) 1334-1340
  • 90 Fengler BT. Should etomidate be used for rapid-sequence intubation induction in critically ill septic patients?. Am J Emerg Med 2008; 26 (02) 229-232
  • 91 Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 1984; 310 (22) 1415-1421
  • 92 Dörr HG, Kuhnle U, Holthausen H, Bidlingmaier F, Knorr D. Etomidate: a selective adrenocortical 11 β-hydroxylase inhibitor. Klin Wochenschr 1984; 62 (21) 1011-1013
  • 93 den Brinker M, Joosten KF, Liem O. , et al. Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. J Clin Endocrinol Metab 2005; 90 (09) 5110-5117
  • 94 den Brinker M, Hokken-Koelega AC, Hazelzet JA, de Jong FH, Hop WC, Joosten KF. One single dose of etomidate negatively influences adrenocortical performance for at least 24h in children with meningococcal sepsis. Intensive Care Med 2008; 34 (01) 163-168
  • 95 Jackson Jr WL. Should we use etomidate as an induction agent for endotracheal intubation in patients with septic shock?: a critical appraisal. Chest 2005; 127 (03) 1031-1038
  • 96 Bloomfield R, Noble DW. Etomidate and fatal outcome--even a single bolus dose may be detrimental for some patients. Br J Anaesth 2006; 97 (01) 116-117
  • 97 Taniguchi T, Shibata K, Yamamoto K. Ketamine inhibits endotoxin-induced shock in rats. Anesthesiology 2001; 95 (04) 928-932
  • 98 Song XM, Li JG, Wang YL. , et al. Effects of ketamine on proinflammatory cytokines and nuclear factor kappaB in polymicrobial sepsis rats. World J Gastroenterol 2006; 12 (45) 7350-7354
  • 99 Mencía SB, López-Herce JC, Freddi N. Analgesia and sedation in children: practical approach for the most frequent situations. J Pediatr (Rio J) 2007; 83 (2, Suppl): S71-S82
  • 100 Sagarin MJ, Chiang V, Sakles JC. , et al; National Emergency Airway Registry (NEAR) investigators. Rapid sequence intubation for pediatric emergency airway management. Pediatr Emerg Care 2002; 18 (06) 417-423
  • 101 Sun CY, Lee KC, Lin IH. , et al. Near-infrared light device can improve intravenous cannulation in critically ill children. Pediatr Neonatol 2013; 54: 194-197
  • 102 Lillis KA, Jaffe DM. Prehospital intravenous access in children. Ann Emerg Med 1992; 21 (12) 1430-1434
  • 103 Stovroff M, Teague WG. Intravenous access in infants and children. Pediatr Clin North Am 1998; 45 (06) 1373-1393 , viii
  • 104 Idris AH, Melker RJ. High-flow sheaths for pediatric fluid resuscitation: a comparison of flow rates with standard pediatric catheters. Pediatr Emerg Care 1992; 8 (03) 119-122
  • 105 Rosetti VA, Thompson BM, Miller J, Mateer JR, Aprahamian C. Intraosseous infusion: an alternative route of pediatric intravascular access. Ann Emerg Med 1985; 14 (09) 885-888
  • 106 Seigler RS, Tecklenburg FW, Shealy R. Prehospital intraosseous infusion by emergency medical services personnel: a prospective study. Pediatrics 1989; 84 (01) 173-177
  • 107 Glaeser PW, Hellmich TR, Szewczuga D, Losek JD, Smith DS. Five-year experience in prehospital intraosseous infusions in children and adults. Ann Emerg Med 1993; 22 (07) 1119-1124
  • 108 Fiorito BA, Mirza F, Doran TM. , et al. Intraosseous access in the setting of pediatric critical care transport. Pediatr Crit Care Med 2005; 6 (01) 50-53
  • 109 Horton MA, Beamer C. Powered intraosseous insertion provides safe and effective vascular access for pediatric emergency patients. Pediatr Emerg Care 2008; 24 (06) 347-350
  • 110 Ngo NT, Cao XT, Kneen R. , et al. Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis 2001; 32 (02) 204-213
  • 111 Wills BA, Nguyen MD, Ha TL. , et al. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med 2005; 353 (09) 877-889
  • 112 Dung NM, Day NP, Tam DT. , et al. Fluid replacement in dengue shock syndrome: a randomized, double-blind comparison of four intravenous-fluid regimens. Clin Infect Dis 1999; 29 (04) 787-794
  • 113 Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. ; SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350 (22) 2247-2256
  • 114 Upadhyay M, Singhi S, Murlidharan J, Kaur N, Majumdar S. Randomized evaluation of fluid resuscitation with crystalloid (saline) and colloid (polymer from degraded gelatin in saline) in pediatric septic shock. Indian Pediatr 2005; 42 (03) 223-231
  • 115 Akech S, Ledermann H, Maitland K. Choice of fluids for resuscitation in children with severe infection and shock: systematic review. BMJ 2010; 341: c4416
  • 116 Ford N, Hargreaves S, Shanks L. Mortality after fluid bolus in children with shock due to sepsis or severe infection: a systematic review and meta-analysis. PLoS One 2012; 7 (08) e43953
  • 117 Mendes PV, Zampieri FG, Park M. Is There a Role for Balanced Solutions in Septic Patients?. Shock 2017; 47 (1S, Suppl 1): 30-34
  • 118 Guidet B, Soni N, Della Rocca G. , et al. A balanced view of balanced solutions. Crit Care 2010; 14 (05) 325
  • 119 Vincent JL, Orbegozo Cortés D, Acheampong A. Current haemodynamic management of septic shock. Presse Med 2016; 45 (4 Pt 2): e99-e103
  • 120 Allen SJ. Fluid therapy and outcome: balance is best. J Extra Corpor Technol 2014; 46 (01) 28-32
  • 121 Orbegozo Cortés D, Rayo Bonor A, Vincent JL. Isotonic crystalloid solutions: a structured review of the literature. Br J Anaesth 2014; 112 (06) 968-981
  • 122 Roquilly A, Loutrel O, Cinotti R. , et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study. Crit Care 2013; 17 (02) R77
  • 123 Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 1999; 88 (05) 999-1003
  • 124 Stoner MJ, Goodman DG, Cohen DM, Fernandez SA, Hall MW. Rapid fluid resuscitation in pediatrics: testing the American College of Critical Care Medicine guideline. Ann Emerg Med 2007; 50 (05) 601-607
  • 125 Carcillo JA, Davis AL, Zaritsky A. Role of early fluid resuscitation in pediatric septic shock. JAMA 1991; 266 (09) 1242-1245
  • 126 Maitland K, Kiguli S, Opoka RO. , et al; FEAST Trial Group. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364 (26) 2483-2495
  • 127 Santhanam I, Sangareddi S, Venkataraman S, Kissoon N, Thiruvengadamudayan V, Kasthuri RK. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care 2008; 24 (10) 647-655
  • 128 Zadrobilek E, Hackl W, Sporn P, Steinbereithner K. Effect of large volume replacement with balanced electrolyte solutions on extravascular lung water in surgical patients with sepsis syndrome. Intensive Care Med 1989; 15 (08) 505-510
  • 129 Cruz AT, Perry AM, Williams EA, Graf JM, Wuestner ER, Patel B. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics 2011; 127 (03) e758-e766
  • 130 Goldstein SL, Somers MJ, Baum MA. , et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 2005; 67 (02) 653-658
  • 131 Askenazi D. Evaluation and management of critically ill children with acute kidney injury. Curr Opin Pediatr 2011; 23 (02) 201-207
  • 132 Gulla KM, Sachdev A, Gupta D, Gupta N, Anand K, Pruthi PK. Continuous renal replacement therapy in children with severe sepsis and multiorgan dysfunction - a pilot study on timing of initiation. Indian J Crit Care Med 2015; 19 (10) 613-617
  • 133 Ninis N, Phillips C, Bailey L. , et al. The role of healthcare delivery in the outcome of meningococcal disease in children: case-control study of fatal and non-fatal cases. BMJ 2005; 330 (7506): 1475
  • 134 Thompson MJ, Ninis N, Perera R. , et al. Clinical recognition of meningococcal disease in children and adolescents. Lancet 2006; 367 (9508): 397-403
  • 135 Ushay HM, Notterman DA. Pharmacology of pediatric resuscitation. Pediatr Clin North Am 1997; 44 (01) 207-233
  • 136 Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. ; Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Lancet 2000; 356 (9248): 2139-2143
  • 137 Kellum JA, M Decker J. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 2001; 29 (08) 1526-1531
  • 138 Zacharias M, Mugawar M, Herbison GP. , et al. Interventions for protecting renal function in the perioperative period. Cochrane Database Syst Rev 2013; (09) CD003590
  • 139 De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med 2012; 40 (03) 725-730
  • 140 Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One 2015; 10 (08) e0129305
  • 141 Ventura AM, Shieh HH, Bousso A. , et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med 2015; 43 (11) 2292-2302
  • 142 Jakob SM, Ruokonen E, Takala J. Effects of dopamine on systemic and regional blood flow and metabolism in septic and cardiac surgery patients. Shock 2002; 18 (01) 8-13
  • 143 Dive A, Foret F, Jamart J, Bulpa P, Installé E. Effect of dopamine on gastrointestinal motility during critical illness. Intensive Care Med 2000; 26 (07) 901-907
  • 144 Shoemaker WC, Appel PL, Kram HB, Duarte D, Harrier HD, Ocampo HA. Comparison of hemodynamic and oxygen transport effects of dopamine and dobutamine in critically ill surgical patients. Chest 1989; 96 (01) 120-126
  • 145 Van den Berghe G, de Zegher F, Lauwers P. Dopamine suppresses pituitary function in infants and children. Crit Care Med 1994; 22 (11) 1747-1753
  • 146 Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 1996; 24 (09) 1580-1590
  • 147 Sookhai S, Wang JH, Winter D, Power C, Kirwan W, Redmond HP. Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock 2000; 14 (03) 295-299
  • 148 Schilling T, Gründling M, Strang CM, Möritz KU, Siegmund W, Hachenberg T. Effects of dopexamine, dobutamine or dopamine on prolactin and thyreotropin serum concentrations in high-risk surgical patients. Intensive Care Med 2004; 30 (06) 1127-1133
  • 149 Perkin RM, Levin DL, Webb R, Aquino A, Reedy J. Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982; 100 (06) 977-983
  • 150 Ruffolo Jr RR. The pharmacology of dobutamine. Am J Med Sci 1987; 294 (04) 244-248
  • 151 Habib DM, Padbury JF, Anas NG, Perkin RM, Minegar C. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 1992; 20 (05) 601-608
  • 152 Harada K, Tamura M, Ito T, Suzuki T, Takada G. Effects of low-dose dobutamine on left ventricular diastolic filling in children. Pediatr Cardiol 1996; 17 (04) 220-225
  • 153 Berg RA, Donnerstein RL, Padbury JF. Dobutamine infusions in stable, critically ill children: pharmacokinetics and hemodynamic actions. Crit Care Med 1993; 21 (05) 678-686
  • 154 Bollaert PE, Bauer P, Audibert G, Lambert H, Larcan A. Effects of epinephrine on hemodynamics and oxygen metabolism in dopamine-resistant septic shock. Chest 1990; 98 (04) 949-953
  • 155 Mackenzie SJ, Kapadia F, Nimmo GR, Armstrong IR, Grant IS. Adrenaline in treatment of septic shock: effects on haemodynamics and oxygen transport. Intensive Care Med 1991; 17 (01) 36-39
  • 156 Wilson W, Lipman J, Scribante J. , et al. Septic shock: does adrenaline have a role as a first-line inotropic agent?. Anaesth Intensive Care 1992; 20 (04) 470-474
  • 157 Irazuzta J, Sullivan KJ, Garcia PC, Piva JP. Pharmacologic support of infants and children in septic shock. J Pediatr (Rio J) 2007; 83 (2, Suppl): S36-S45
  • 158 Berg RA, Padbury JF. Sulfoconjugation and renal excretion contribute to the interpatient variation of exogenous catecholamine clearance in critically ill children. Crit Care Med 1997; 25 (07) 1247-1251
  • 159 Fisher DG, Schwartz PH, Davis AL. Pharmacokinetics of exogenous epinephrine in critically ill children. Crit Care Med 1993; 21 (01) 111-117
  • 160 Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock?. Chest 1993; 103 (06) 1826-1831
  • 161 Klinzing S, Simon M, Reinhart K, Bredle DL, Meier-Hellmann A. High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med 2003; 31 (11) 2646-2650
  • 162 Delmas A, Leone M, Rousseau S, Albanèse J, Martin C. Clinical review: vasopressin and terlipressin in septic shock patients. Crit Care 2005; 9 (02) 212-222
  • 163 Matok I, Vard A, Efrati O. , et al. Terlipressin as rescue therapy for intractable hypotension due to septic shock in children. Shock 2005; 23 (04) 305-310
  • 164 Liedel JL, Meadow W, Nachman J, Koogler T, Kahana MD. Use of vasopressin in refractory hypotension in children with vasodilatory shock: five cases and a review of the literature. Pediatr Crit Care Med 2002; 3 (01) 15-18
  • 165 Vasudevan A, Lodha R, Kabra SK. Vasopressin infusion in children with catecholamine-resistant septic shock. Acta Paediatr 2005; 94 (03) 380-383
  • 166 Biban P, Gaffuri M. Vasopressin and terlipressin in neonates and children with refractory septic shock. Curr Drug Metab 2013; 14 (02) 186-192
  • 167 Lindsay CA, Barton P, Lawless S. , et al. Pharmacokinetics and pharmacodynamics of milrinone lactate in pediatric patients with septic shock. J Pediatr 1998; 132 (02) 329-334
  • 168 Irazuzta JE, Pretzlaff RK, Rowin ME. Amrinone in pediatric refractory septic shock: an open-label pharmacodynamic study. Pediatr Crit Care Med 2001; 2 (01) 24-28
  • 169 Bishara T, Seto WT, Trope A, Parshuram CS. Use of milrinone in critically ill children. Can J Hosp Pharm 2010; 63 (06) 420-428
  • 170 Papoff P, Caresta E, Versacci P, Pinto R, Moretti C, Midulla F. Beneficial effects of levosimendan in infants with sepsis-associated cardiac dysfunction: report of 2 cases. Pediatr Emerg Care 2012; 28 (10) 1062-1065
  • 171 Morelli A, De Castro S, Teboul JL. , et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 2005; 31 (05) 638-644
  • 172 Namachivayam P, Crossland DS, Butt WW, Shekerdemian LS. Early experience with Levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med 2006; 7 (05) 445-448
  • 173 Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332 (20) 1351-1362
  • 174 Jäättelä M, Ilvesmäki V, Voutilainen R, Stenman UH, Saksela E. Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 1991; 128 (01) 623-629
  • 175 Huang ZH, Gao H, Xu RB. Study on glucocorticoid receptors during intestinal ischemia shock and septic shock. Circ Shock 1987; 23 (01) 27-36
  • 176 Molijn GJ, Koper JW, van Uffelen CJ. , et al. Temperature-induced down-regulation of the glucocorticoid receptor in peripheral blood mononuclear leucocyte in patients with sepsis or septic shock. Clin Endocrinol (Oxf) 1995; 43 (02) 197-203
  • 177 Wynn JL, Wong HR. Pathophysiology and treatment of septic shock in neonates. Clin Perinatol 2010; 37 (02) 439-479
  • 178 Hatherill M, Tibby SM, Hilliard T, Turner C, Murdoch IA. Adrenal insufficiency in septic shock. Arch Dis Child 1999; 80 (01) 51-55
  • 179 Matot I, Sprung CL. Corticosteroids in septic shock: resurrection of the last rites?. Crit Care Med 1998; 26 (04) 627-630
  • 180 Briegel J, Forst H, Kellermann W, Haller M, Peter K. Haemodynamic improvement in refractory septic shock with cortisol replacement therapy. Intensive Care Med 1992; 18 (05) 318
  • 181 Markovitz BP, Goodman DM, Watson RS, Bertoch D, Zimmerman J. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids?. Pediatr Crit Care Med 2005; 6 (03) 270-274
  • 182 Atkinson SJ, Cvijanovich NZ, Thomas NJ. , et al. Corticosteroids and pediatric septic shock outcomes: a risk stratified analysis. PLoS One 2014; 9 (11) e112702
  • 183 Zimmerman JJ, Williams MD. Adjunctive corticosteroid therapy in pediatric severe sepsis: observations from the RESOLVE study. Pediatr Crit Care Med 2011; 12 (01) 2-8
  • 184 Kumar A, Roberts D, Wood KE. , et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34 (06) 1589-1596
  • 185 Weiss SL, Fitzgerald JC, Balamuth F. , et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med 2014; 42 (11) 2409-2417
  • 186 Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 1998; 244 (05) 379-386
  • 187 Marshall JC, Maier RV, Jimenez M, Dellinger EP. Source control in the management of severe sepsis and septic shock: an evidence-based review. Crit Care Med 2004; 32 (11, Suppl): S513-S526
  • 188 Knight PH, Maheshwari N, Hussain J. , et al. Complications during intrahospital transport of critically ill patients: focus on risk identification and prevention. Int J Crit Illn Inj Sci 2015; 5 (04) 256-264
  • 189 Foronda C, VanGraafeiland B, Quon R, Davidson P. Handover and transport of critically ill children: an integrative review. Int J Nurs Stud 2016; 62: 207-225
  • 190 El-Nawawy A, El-Kinany H, Hamdy El-Sayed M, Boshra N. Intravenous polyclonal immunoglobulin administration to sepsis syndrome patients: a prospective study in a pediatric intensive care unit. J Trop Pediatr 2005; 51 (05) 271-278
  • 191 Tugrul S, Ozcan PE, Akinci O. , et al. The effects of IgM-enriched immunoglobulin preparations in patients with severe sepsis [ISRCTN28863830]. Crit Care 2002; 6 (04) 357-362
  • 192 Carlet J. ; International Sepsis Forum. Immunological therapy in sepsis: currently available. Intensive Care Med 2001; 27 (Suppl. 01) S93-S103
  • 193 Rieben R, Roos A, Muizert Y, Tinguely C, Gerritsen AF, Daha MR. Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood 1999; 93 (03) 942-951
  • 194 Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 2007; 35 (12) 2677-2685
  • 195 Hentrich M, Fehnle K, Ostermann H. , et al. IgMA-enriched immunoglobulin in neutropenic patients with sepsis syndrome and septic shock: a randomized, controlled, multiple-center trial. Crit Care Med 2006; 34 (05) 1319-1325
  • 196 Rodríguez A, Rello J, Neira J. , et al. Effects of high-dose of intravenous immunoglobulin and antibiotics on survival for severe sepsis undergoing surgery. Shock 2005; 23 (04) 298-304
  • 197 Mouthon L, Lortholary O. Intravenous immunoglobulins in infectious diseases: where do we stand?. Clin Microbiol Infect 2003; 9 (05) 333-338
  • 198 Shah SS, Hall M, Srivastava R, Subramony A, Levin JE. Intravenous immunoglobulin in children with streptococcal toxic shock syndrome. Clin Infect Dis 2009; 49 (09) 1369-1376
  • 199 Werdan K, Pilz G, Bujdoso O. , et al; Score-Based Immunoglobulin Therapy of Sepsis (SBITS) Study Group. Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 2007; 35 (12) 2693-2701
  • 200 Brocklehurst P, Farrell B, King A. , et al; INIS Collaborative Group. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med 2011; 365 (13) 1201-1211
  • 201 Kaul R, McGeer A, Norrby-Teglund A. , et al; The Canadian Streptococcal Study Group. Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome--a comparative observational study. Clin Infect Dis 1999; 28 (04) 800-807
  • 202 Norrby-Teglund A, Stevens DL. Novel therapies in streptococcal toxic shock syndrome: attenuation of virulence factor expression and modulation of the host response. Curr Opin Infect Dis 1998; 11 (03) 285-291
  • 203 El-Wiher N, Cornell TT, Kissoon N, Shanley TP. Management and Treatment Guidelines for Sepsis in Pediatric Patients. Open Inflamm J 2011; 4 (Suppl 1-M11): 101-109
  • 204 Karam O, Tucci M, Ducruet T, Hume HA, Lacroix J, Gauvin F. ; Canadian Critical Care Trials Group; PALISI Network. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med 2011; 12 (05) 512-518
  • 205 Rivers E, Nguyen B, Havstad S. , et al; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345 (19) 1368-1377
  • 206 Laverdière C, Gauvin F, Hébert PC. , et al; Canadian Critical Care Trials Group. Survey on transfusion practices of pediatric intensivists. Pediatr Crit Care Med 2002; 3 (04) 335-340
  • 207 Nahum E, Ben-Ari J, Schonfeld T. Blood transfusion policy among European pediatric intensive care physicians. J Intensive Care Med 2004; 19 (01) 38-43
  • 208 Lacroix J, Hébert PC, Hutchison JS. , et al; TRIPICU Investigators; Canadian Critical Care Trials Group; Pediatric Acute Lung Injury and Sepsis Investigators Network. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 2007; 356 (16) 1609-1619
  • 209 Levi M. Disseminated intravascular coagulation. Crit Care Med 2007; 35 (09) 2191-2195
  • 210 Bick RL. Disseminated intravascular coagulation current concepts of etiology, pathophysiology, diagnosis, and treatment. Hematol Oncol Clin North Am 2003; 17 (01) 149-176
  • 211 Barbui T, Falanga A. Disseminated intravascular coagulation in acute leukemia. Semin Thromb Hemost 2001; 27 (06) 593-604
  • 212 Williams MD, Chalmers EA, Gibson BE. ; Haemostasis and Thrombosis Task Force, British Committee for Standards in Haematology. The investigation and management of neonatal haemostasis and thrombosis. Br J Haematol 2002; 119 (02) 295-309
  • 213 Franchini M, Manzato F. Update on the treatment of disseminated intravascular coagulation. Hematology 2004; 9 (02) 81-85
  • 214 de Kleijn ED, de Groot R, Hack CE. , et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 2003; 31 (06) 1839-1847
  • 215 Veldman A, Fischer D, Wong FY. , et al. Human protein C concentrate in the treatment of purpura fulminans: a retrospective analysis of safety and outcome in 94 pediatric patients. Crit Care 2010; 14 (04) R156
  • 216 Ettingshausen CE, Veldmann A, Beeg T, Schneider W, Jäger G, Kreuz W. Replacement therapy with protein C concentrate in infants and adolescents with meningococcal sepsis and purpura fulminans. Semin Thromb Hemost 1999; 25 (06) 537-541
  • 217 McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin 2001; 17 (01) 107-124
  • 218 Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complications 2001; 15 (01) 44-54
  • 219 Turina M, Fry DE, Polk Jr HC. Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit Care Med 2005; 33 (07) 1624-1633
  • 220 Branco RG, Garcia PC, Piva JP, Casartelli CH, Seibel V, Tasker RC. Glucose level and risk of mortality in pediatric septic shock. Pediatr Crit Care Med 2005; 6 (04) 470-472
  • 221 Faustino EV, Apkon M. Persistent hyperglycemia in critically ill children. J Pediatr 2005; 146 (01) 30-34
  • 222 Day KM, Haub N, Betts H, Inwald DP. Hyperglycemia is associated with morbidity in critically ill children with meningococcal sepsis. Pediatr Crit Care Med 2008; 9 (06) 636-640
  • 223 Brunkhorst FM, Engel C, Bloos F. , et al; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358 (02) 125-139
  • 224 Klein GW, Hojsak JM, Schmeidler J, Rapaport R. Hyperglycemia and outcome in the pediatric intensive care unit. J Pediatr 2008; 153 (03) 379-384
  • 225 Garcia Branco R, Tasker RC, Ramos Garcia PC, Piva JP, Dias Xavier L. Glycemic control and insulin therapy in sepsis and critical illness. J Pediatr (Rio J) 2007; 83 (5, Suppl): S128-S136
  • 226 Meyer DM, Jessen ME. ; The Extracorporeal Life Support Organization. Results of extracorporeal membrane oxygenation in children with sepsis. Ann Thorac Surg 1997; 63 (03) 756-761
  • 227 Goldman AP, Kerr SJ, Butt W. , et al. Extracorporeal support for intractable cardiorespiratory failure due to meningococcal disease. Lancet 1997; 349 (9050): 466-469
  • 228 Maclaren G, Butt W, Best D, Donath S, Taylor A. Extracorporeal membrane oxygenation for refractory septic shock in children: one institution's experience. Pediatr Crit Care Med 2007; 8 (05) 447-451
  • 229 MacLaren G, Butt W, Best D, Donath S. Central extracorporeal membrane oxygenation for refractory pediatric septic shock. Pediatr Crit Care Med 2011; 12 (02) 133-136
  • 230 Butt W, Maclaren G. Extracorporeal membrane oxygenation. F1000Prime Rep 2013; 5: 55