Semin Musculoskelet Radiol 2017; 21(05): 604-615
DOI: 10.1055/s-0037-1606135
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Leaps in Technology: Advanced MR Imaging after Total Hip Arthroplasty

Iman Khodarahmi
1   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
2   Department of Radiology, Rutgers New Jersey Medical School, Newark, New Jersey
,
Mathias Nittka
3   Siemens Healthcare GmbH, Erlangen, Germany
,
Jan Fritz
1   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
12 October 2017 (online)

Abstract

The vast majority of the metal-related artifacts in magnetic resonance imaging (MRI) arise from B0 inhomogeneity. These artifacts include failed fat suppression, signal loss, signal pileup, and image distortions. Metal artifact reduction sequence MRI has been used to mitigate these artifacts via optimization of the scan parameters and exploiting new techniques such as fully phase-encoded imaging and multispectral imaging including multi-acquisition variable-resonance image combination and slice encoding for metal artifact correction. Applicability of MRI in the vicinity of metal implants has been revolutionized by these new techniques at the expense of longer acquisition times. To reach clinically viable scan times, these novel techniques have been successfully coupled with various acceleration paradigms such as parallel imaging and compressed sensing.

 
  • References

  • 1 Maradit Kremers H, Larson DR, Crowson CS. , et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am 2015; 97 (17) 1386-1397
  • 2 Hargunani R, Madani H, Khoo M. , et al. Imaging of the painful hip arthroplasty. Can Assoc Radiol J 2016; 67 (04) 345-355
  • 3 Ninomiya JT, Dean JC, Incavo SJ. What's new in hip replacement. J Bone Joint Surg Am 2015; 97 (18) 1543-1551
  • 4 Ninomiya JT, Dean JC, Incavo SJ. What's new in hip replacement. J Bone Joint Surg Am 2016; 98 (18) 1586-1593
  • 5 Blum A, Gondim-Teixeira P, Gabiache E. , et al; Nancy Association for Prosthesis Exploration (NAPE). Developments in imaging methods used in hip arthroplasty: a diagnostic algorithm. Diagn Interv Imaging 2016; 97 (7-8): 735-747
  • 6 Chang EY, McAnally JL, Van Horne JR. , et al. Metal-on-metal total hip arthroplasty: do symptoms correlate with MR imaging findings?. Radiology 2012; 265 (03) 848-857
  • 7 Hayter CL, Potter HG, Su EP. Imaging of metal-on-metal hip resurfacing. Orthop Clin North Am 2011; 42 (02) 195-205 , viii
  • 8 Hayter CL, Gold SL, Koff MF. , et al. MRI findings in painful metal-on-metal hip arthroplasty. AJR Am J Roentgenol 2012; 199 (04) 884-893
  • 9 Potter HG, Nestor BJ, Sofka CM, Ho ST, Peters LE, Salvati EA. Magnetic resonance imaging after total hip arthroplasty: evaluation of periprosthetic soft tissue. J Bone Joint Surg Am 2004; 86-A (09) 1947-1954
  • 10 Cooper HJ, Ranawat AS, Potter HG, Foo LF, Koob TW, Ranawat CS. Early reactive synovitis and osteolysis after total hip arthroplasty. Clin Orthop Relat Res 2010; 468 (12) 3278-3285
  • 11 Hayter CL, Koff MF, Potter HG. Magnetic resonance imaging of the postoperative hip. J Magn Reson Imaging 2012; 35 (05) 1013-1025
  • 12 Potter HG, Foo LF. Magnetic resonance imaging of joint arthroplasty. Orthop Clin North Am 2006; 37 (03) 361-373 , vi–vii
  • 13 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (04) E106-E132
  • 14 Fritz J, Lurie B, Miller TT. Imaging of hip arthroplasty. Semin Musculoskelet Radiol 2013; 17 (03) 316-327
  • 15 Burge AJ. Total hip arthroplasty: MR imaging of complications unrelated to metal wear. Semin Musculoskelet Radiol 2015; 19 (01) 31-39
  • 16 Maloney E, Ha AS, Miller TT. Imaging of adverse reactions to metal debris. Semin Musculoskelet Radiol 2015; 19 (01) 21-30
  • 17 Koff MF, Burge AJ, Koch KM, Potter HG. Imaging near orthopedic hardware. J Magn Reson Imaging 2017; 46 (01) 24-39
  • 18 Khodarahmi I, Fritz J. Advanced MR imaging after total hip arthroplasty: the clinical impact. Semin Musculoskelet Radiol 2017; 21 (05) 615-628
  • 19 Dillenseger JP, Molière S, Choquet P, Goetz C, Ehlinger M, Bierry G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 2016; 45 (05) 677-688
  • 20 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 21 Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging 2010; 32 (04) 773-787
  • 22 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15 (01) 7-11
  • 23 Koch KM, King KF, Carl M, Hargreaves BA. Imaging near metal: the impact of extreme static local field gradients on frequency encoding processes. Magn Reson Med 2014; 71 (06) 2024-2034
  • 24 Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol 2012; 199 (06) W735-W742
  • 25 Del Grande F, Santini F, Herzka DA. , et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (01) 217-233
  • 26 Olsen RV, Munk PL, Lee MJ. , et al. Metal artifact reduction sequence: early clinical applications. Radiographics 2000; 20 (03) 699-712
  • 27 Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging 2017
  • 28 Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol 2017; 46 (07) 897-908
  • 29 Sze G, Kawamura Y, Negishi C. , et al. Fast spin-echo MR imaging of the cervical spine: influence of echo train length and echo spacing on image contrast and quality. AJNR Am J Neuroradiol 1993; 14 (05) 1203-1213
  • 30 Lee MJ, Kim S, Lee SA. , et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007; 27 (03) 791-803
  • 31 Kumar NM, de Cesar Netto C, Schon LC, Fritz J. Metal artifact reduction magnetic resonance imaging around arthroplasty implants: the negative effect of long echo trains on the implant-related artifact. Invest Radiol 2017; 52 (05) 310-316
  • 32 Venook RD, Matter NI, Ramachandran M. , et al. Prepolarized magnetic resonance imaging around metal orthopedic implants. Magn Reson Med 2006; 56 (01) 177-186
  • 33 Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003; 27 (06) 825-846
  • 34 Gold GE, Thedens DR, Pauly JM. , et al. MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. AJR Am J Roentgenol 1998; 170 (05) 1223-1226
  • 35 Rahmer J, Börnert P, Dries SP. Assessment of anterior cruciate ligament reconstruction using 3D ultrashort echo-time MR imaging. J Magn Reson Imaging 2009; 29 (02) 443-448
  • 36 Du J, Borden K, Diaz E. , et al. Imaging of metallic implant using 3D ultrashort echo time (3D UTE) pulse sequence [132]. Available at: http://cds.ismrm.org/protected/10MProceedings/files/132_2310.pdf . Accessed August 16, 2017
  • 37 Emid S, Creyghton JHN. High resolution NMR imaging in solids. Physica B+C 1985; 128: 81-83
  • 38 Gravina S, Cory DG. Sensitivity and resolution of constant-time imaging. J Magn Reson B 1994; 104: 53-61
  • 39 Balcom BJ, Macgregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW. Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Reson A 1996; 123 (01) 131-134
  • 40 Ramos-Cabrer P, van Duynhoven JP, Van der Toorn A, Nicolay K. MRI of hip prostheses using single-point methods: in vitro studies towards the artifact-free imaging of individuals with metal implants. Magn Reson Imaging 2004; 22 (08) 1097-1103
  • 41 Artz NS, Hernando D, Taviani V, Samsonov A, Brittain JH, Reeder SB. Spectrally resolved fully phase-encoded three-dimensional fast spin-echo imaging. Magn Reson Med 2014; 71 (02) 681-690
  • 42 Butts K, Pauly JM, Daniel BL, Kee S, Norbash AM. Management of biopsy needle artifacts: techniques for RF-refocused MRI. J Magn Reson Imaging 1999; 9 (04) 586-595
  • 43 Lee MJ, Janzen DL, Munk PL, MacKay A, Xiang QS, McGowen A. Quantitative assessment of an MR technique for reducing metal artifact: application to spin-echo imaging in a phantom. Skeletal Radiol 2001; 30 (07) 398-401
  • 44 Kolind SH, MacKay AL, Munk PL, Xiang QS. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging 2004; 20 (03) 487-495
  • 45 Butts K, Pauly JM, Gold GE. Reduction of blurring in view angle tilting MRI. Magn Reson Med 2005; 53 (02) 418-424
  • 46 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61 (02) 381-390
  • 47 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62 (01) 66-76
  • 48 Hargreaves B, Taviani V, Yoon D. Fast 2D imaging for distortion correction near metal implants [615]. Paper presented at: 22th annual meeting of the International Society for Magnetic Resonance in Medicine; 2014 ; Milan, Italy
  • 49 Chen CA, Chen W, Goodman SB. , et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (05) 1121-1127
  • 50 Filli L, Jud L, Luechinger R. , et al. Material-dependent implant artifact reduction using SEMAC-VAT and MAVRIC: a prospective MRI phantom study. Invest Radiol 2017; 52 (06) 381-387
  • 51 Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265 (01) 204-214
  • 52 den Harder JC, van Yperen GH, Blume UA, Bos C. Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction. Magn Reson Med 2015; 73 (01) 318-324
  • 53 den Harder JC, van Yperen GH, Blume UA, Bos C. Off-resonance suppression for multispectral MR imaging near metallic implants. Magn Reson Med 2015; 73 (01) 233-243
  • 54 Li G, Nittka M, Paul D, Lauer L. MSVAT-SPACE for fast metal implants imaging [3171]. Paper presented at: 19th annual meeting of the International Society for Magnetic Resonance in Medicine; 2011 ; Montreal, QB, Canada
  • 55 Ai T, Padua A, Goerner F. , et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol 2012; 47 (05) 267-276
  • 56 Koch KM, Brau AC, Chen W. , et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65 (01) 71-82
  • 57 Carl M, Koch K, Du J. MR imaging near metal with undersampled 3D radial UTE-MAVRIC sequences. Magn Reson Med 2013; 69 (01) 27-36
  • 58 Graf H, Steidle G, Martirosian P, Lauer UA, Schick F. Metal artifacts caused by gradient switching. Magn Reson Med 2005; 54 (01) 231-234
  • 59 Graf H, Steidle G, Martirosian P, Lauer UA, Schick F. Effects on MRI due to altered rf polarization near conductive implants or instruments. Med Phys 2006; 33 (01) 124-127
  • 60 Graf H, Lauer UA, Berger A, Schick F. RF artifacts caused by metallic implants or instruments which get more prominent at 3 T: an in vitro study. Magn Reson Imaging 2005; 23 (03) 493-499
  • 61 Bachschmidt TJ, Köhler M, Nistler J, Geppert C, Jakob PM, Nittka M. Polarized multichannel transmit MRI to reduce shading near metal implants. Magn Reson Med 2016; 75 (01) 217-226
  • 62 Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 1991; 10 (02) 154-163
  • 63 Hargreaves BA, Chen W, Lu W. , et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging 2010; 31 (04) 987-996
  • 64 Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging 2013; 37 (01) 243-248
  • 65 Griswold MA, Jakob PM, Heidemann RM. , et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47 (06) 1202-1210
  • 66 Beatty P, Brau A, Chang S. , et al. A method for autocalibrating 2-D accelerated volumetric parallel imaging with clinically practical reconstruction times [1749]. Available at: http://cds.ismrm.org/ismrm-2007/files/01749.pdf . Accessed August 16, 2017
  • 67 Brau AC, Beatty PJ, Skare S, Bammer R. Comparison of reconstruction accuracy and efficiency among autocalibrating data-driven parallel imaging methods. Magn Reson Med 2008; 59 (02) 382-395
  • 68 Chen W, Beatty P, Koch K, Brau A. Parallel MRI near metallic implants [2783]. Paper presented at: 17th annual meeting of the International Society for Magnetic Resonance in Medicine; 2009 ; Honolulu, HI
  • 69 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58 (06) 1182-1195
  • 70 van Gorp JS, Bakker CJ, Bouwman JG, Smink J, Zijlstra F, Seevinck PR. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging. Phys Med Biol 2015; 60 (02) 615-631
  • 71 Smith MR, Artz NS, Koch KM, Samsonov A, Reeder SB. Accelerating sequences in the presence of metal by exploiting the spatial distribution of off-resonance. Magn Reson Med 2014; 72 (06) 1658-1667
  • 72 Artz NS, Wiens CN, Smith MR, Hernando D, Samsonov A, Reeder SB. Accelerating fully phase-encoded MRI near metal using multiband radiofrequency excitation. Magn Reson Med 2017; 77 (03) 1223-1230
  • 73 Kim M, Hong T, Kim D. Increasing parallel imaging performance and correcting field inhomogeneity artifact in MS-CAIPIRINHA using view angle tilting technique (CAIPI-VAT) [648]. Paper presented at: 22th annual meeting of the International Society for Magnetic Resonance in Medicine; 2014 ; Milan, Italy
  • 74 Koch K, King K. Combined parallel imaging and compressed sensing on 3D multi-spectral imaging near metal implants [3172]. Paper presented at: 19th annual meeting of the International Society for Magnetic Resonance in Medicine; 2011 ; Montreal, QB, Canada
  • 75 Fritz J, Fritz B, Thawait GK. , et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol 2016; 45 (10) 1345-1356
  • 76 Fritz J, Ahlawat S, Demehri S. , et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676
  • 77 Otazo R, Nittka M, Bruno M. , et al. Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration. Magn Reson Med 2017; 78 (01) 79-87
  • 78 Sveinsson B, Worters PW, Gold GE, Hargreaves BA. Hexagonal undersampling for faster MRI near metallic implants. Magn Reson Med 2015; 73 (02) 662-668