Thorac Cardiovasc Surg 2018; 66(01): 031-041
DOI: 10.1055/s-0037-1607052
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Mechanisms Involved in Premature Aging in the Heart—Is There an Implication for Cardiac Surgery?

Bernd Niemann
1   Department of Adult and Pediatric Cardiac and Vascular Surgery, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg (UKGM), Giessen, Germany
,
Andreas Simm
2   Department of Cardiac Surgery, University Hospital Halle (Saale), Halle (Saale), Germany
,
Susanne Rohrbach
3   Institute for Physiology, Justus-Liebig-University Giessen, Giessen, Germany
› Author Affiliations
Further Information

Publication History

26 May 2017

24 August 2017

Publication Date:
27 October 2017 (online)

Abstract

During the past century, life expectancy has risen in Germany from 35.6 and 38.5 years in men and women (1871/1881) to 78.2 and 83.1 years (2013/2015). In recent years, the dominance of chronic diseases as major contributors to total global mortality has emerged. The incidence of cardiovascular diseases (CVD) increases in westernized societies and projected trends suggest that by 2030, CVD alone will also be responsible for more deaths in low-income countries than infectious diseases. The occurrence of CVD also seems to correlate to a further increase of biological age within westernized societies. Therefore, age-associated changes in the heart are an issue of high interest in cardiac surgery. The chronological age is a prognostic marker in some clinical scoring systems. However, it does not represent an adequate estimation of the biological age of patients or their perioperative risk. In fact, frailty might be a more powerful predictor for normal perioperative course or risk escalation. An unhealthy, sedentary lifestyle can induce premature aging of vessels and myocardium. Understanding the age-associated genetic, biochemical, and pathophysiological changes can help identify the therapeutic capability of aged myocardium. Future “therapeutic myocardial rejuvenation” may represent a powerful tool for the stabilization of the perioperative course in aged patients. In this review, we will focus on selected mediators or conditions with impact on age-associated myocardial changes with a major focus on obesity and discuss potential therapeutic strategies to utilize or modify these mediators.

 
  • References

  • 1 Rohrbach S, Troidl C, Hamm C, Schulz R. Ischemia and reperfusion related myocardial inflammation: a network of cells and mediators targeting the cardiomyocyte. IUBMB Life 2015; 67 (02) 110-119
  • 2 Lee S, Choi E, Cha MJ, Park AJ, Yoon C, Hwang KC. Impact of miRNAs on cardiovascular aging. J Geriatr Cardiol 2015; 12 (05) 569-574
  • 3 Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2014; 171 (12) 2964-2992
  • 4 Niemann B, Chen Y, Issa H, Silber RE, Rohrbach S. Caloric restriction delays cardiac ageing in rats: role of mitochondria. Cardiovasc Res 2010; 88 (02) 267-276
  • 5 Böning A, Rohrbach S, Kohlhepp L. , et al. Differences in ischemic damage between young and old hearts–effects of blood cardioplegia. Exp Gerontol 2015; 67: 3-8
  • 6 Niemann B, Chen Y, Teschner M, Li L, Silber RE, Rohrbach S. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol 2011; 57 (05) 577-585
  • 7 Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001; 321 (04) 225-236
  • 8 Lavie CJ, De Schutter A, Parto P. , et al. Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog Cardiovasc Dis 2016; 58 (05) 537-547
  • 9 Borges RL, Ribeiro-Filho FF, Carvalho KM, Zanella MT. [Impact of weight loss on adipocytokines, C-reactive protein and insulin sensitivity in hypertensive women with central obesity]. Arq Bras Cardiol 2007; 89 (06) 409-414
  • 10 Gruberg L, Weissman NJ, Waksman R. , et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox?. J Am Coll Cardiol 2002; 39 (04) 578-584
  • 11 Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 2013; 309 (01) 71-82
  • 12 Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 2008; 11 (06) 693-700
  • 13 Snijder MB, Dekker JM, Visser M. , et al; Hoorn study. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Diabetes Care 2004; 27 (02) 372-377
  • 14 Rohrbach S, Niemann B, Abushouk AM, Holtz J. Caloric restriction and mitochondrial function in the ageing myocardium. Exp Gerontol 2006; 41 (05) 525-531
  • 15 Rohrbach S, Aurich AC, Li L, Niemann B. Age-associated loss in adiponectin-activation by caloric restriction: lack of compensation by enhanced inducibility of adiponectin paralogs CTRP2 and CTRP7. Mol Cell Endocrinol 2007; 277 (1-2): 26-34
  • 16 Tani M, Suganuma Y, Hasegawa H. , et al. Decrease in ischemic tolerance with aging in isolated perfused Fischer 344 rat hearts: relation to increases in intracellular Na+ after ischemia. J Mol Cell Cardiol 1997; 29 (11) 3081-3089
  • 17 Shinmura K, Tamaki K, Bolli R. Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. J Mol Cell Cardiol 2005; 39 (02) 285-296
  • 18 Shinmura K, Tamaki K, Bolli R. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 2008; 295 (06) H2348-H2355
  • 19 Edwards AG, Donato AJ, Lesniewski LA, Gioscia RA, Seals DR, Moore RL. Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech Ageing Dev 2010; 131 (11-12): 739-742
  • 20 Meyer TE, Kovács SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L. Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 2006; 47 (02) 398-402
  • 21 Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 2004; 101 (17) 6659-6663
  • 22 Weiss EP, Albert SG, Reeds DN. , et al. Effects of matched weight loss from calorie restriction, exercise, or both on cardiovascular disease risk factors: a randomized intervention trial. Am J Clin Nutr 2016; 104 (03) 576-586
  • 23 Morley JE, Chahla E, Alkaade S. Antiaging, longevity and calorie restriction. Curr Opin Clin Nutr Metab Care 2010; 13 (01) 40-45
  • 24 Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 2006; 127 (01) 1-7
  • 25 Shanley DP, Kirkwood TB. Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology 2006; 7 (03) 165-168
  • 26 Rochon J, Bales CW, Ravussin E. , et al; CALERIE Study Group. Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci 2011; 66 (01) 97-108
  • 27 de Jonge L, Moreira EA, Martin CK, Ravussin E. . Pennington CALERIE Team. Impact of 6-month caloric restriction on autonomic nervous system activity in healthy, overweight, individuals. Obesity (Silver Spring) 2010; 18 (02) 414-416
  • 28 Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 2010; 1801 (03) 209-214
  • 29 Aurich AC, Niemann B, Pan R. , et al. Age-dependent effects of high fat-diet on murine left ventricles: role of palmitate. Basic Res Cardiol 2013; 108 (05) 369
  • 30 Bowen KJ, Harris WS, Kris-Etherton PM. Omega-3 fatty acids and cardiovascular disease: are there benefits?. Curr Treat Options Cardiovasc Med 2016; 18 (11) 69
  • 31 Blumensatt M, Greulich S, Herzfeld de Wiza D. , et al. Activin A impairs insulin action in cardiomyocytes via up-regulation of miR-143. Cardiovasc Res 2013; 100 (02) 201-210
  • 32 Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2 (10) 536-543
  • 33 Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol 2017; 595 (12) 3907-3917
  • 34 Yamauchi T, Kamon J, Minokoshi Y. , et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8 (11) 1288-1295
  • 35 Shibata R, Sato K, Pimentel DR. , et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005; 11 (10) 1096-1103
  • 36 Shibata R, Numaguchi Y, Matsushita K. , et al. Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction. Am J Cardiol 2008; 101 (12) 1712-1715
  • 37 Tao L, Gao E, Jiao X. , et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 2007; 115 (11) 1408-1416
  • 38 Niemann B, Silber RE, Rohrbach S. Age-specific effects of short- and long-term caloric restriction on the expression of adiponectin and adiponectin receptors: influence of intensity of food restriction. Exp Gerontol 2008; 43 (07) 706-713
  • 39 Okada-Iwabu M, Yamauchi T, Iwabu M. , et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 2013; 503 (7477): 493-499
  • 40 Wong GW, Wang J, Hug C, Tsao TS, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci U S A 2004; 101 (28) 10302-10307
  • 41 Seldin MM, Tan SY, Wong GW. Metabolic function of the CTRP family of hormones. Rev Endocr Metab Disord 2014; 15 (02) 111-123
  • 42 Su H, Yuan Y, Wang XM. , et al. Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice. Basic Res Cardiol 2013; 108 (01) 315
  • 43 Kambara T, Ohashi K, Shibata R. , et al. CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism. J Biol Chem 2012; 287 (23) 18965-18973
  • 44 Yi W, Sun Y, Yuan Y. , et al. C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation 2012; 125 (25) 3159-3169
  • 45 Yang Y, Li Y, Ma Z. , et al. A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection. Prog Lipid Res 2016; 64: 170-177
  • 46 Yuasa D, Ohashi K, Shibata R. , et al. C1q/TNF-related protein-1 functions to protect against acute ischemic injury in the heart. FASEB J 2016; 30 (03) 1065-1075
  • 47 Lu L, Zhang RY, Wang XQ. , et al. C1q/TNF-related protein-1: an adipokine marking and promoting atherosclerosis. Eur Heart J 2016; 37 (22) 1762-1771
  • 48 Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M. Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 2004; 287 (06) H2877-H2884
  • 49 Matsui H, Motooka M, Koike H. , et al. Ischemia/reperfusion in rat heart induces leptin and leptin receptor gene expression. Life Sci 2007; 80 (07) 672-680
  • 50 Unger RH. Lipotoxic diseases. Annu Rev Med 2002; 53: 319-336
  • 51 McGaffin KR, Sun CK, Rager JJ. , et al. Leptin signalling reduces the severity of cardiac dysfunction and remodelling after chronic ischaemic injury. Cardiovasc Res 2008; 77 (01) 54-63
  • 52 Atkinson LL, Fischer MA, Lopaschuk GD. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem 2002; 277 (33) 29424-29430
  • 53 Carter S, Caron A, Richard D, Picard F. Role of leptin resistance in the development of obesity in older patients. Clin Interv Aging 2013; 8: 829-844
  • 54 Lana A, Struijk E, Guallar-Castillón P, Martín-Moreno JM, Rodríguez Artalejo F, Lopez-Garcia E. Leptin concentration and risk of impaired physical function in older adults: the Seniors-ENRICA cohort. Age Ageing 2016; 45 (06) 819-826
  • 55 Rostás I, Tenk J, Mikó A. , et al. Age-related changes in acute central leptin effects on energy balance are promoted by obesity. Exp Gerontol 2016; 85: 118-127
  • 56 Balaskó M, Soós S, Székely M, Pétervári E. Leptin and aging: review and questions with particular emphasis on its role in the central regulation of energy balance. J Chem Neuroanat 2014; 61-62: 248-255
  • 57 Romacho T, Sánchez-Ferrer CF, Peiró C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm 2013; 2013: 946427
  • 58 Pillai VB, Sundaresan NR, Kim G. , et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol 2013; 304 (03) H415-H426
  • 59 Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 2009; 105 (05) 481-491
  • 60 Lim SY, Davidson SM, Paramanathan AJ, Smith CC, Yellon DM, Hausenloy DJ. The novel adipocytokine visfatin exerts direct cardioprotective effects. J Cell Mol Med 2008; 12 (04) 1395-1403
  • 61 Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 2014; 9 (06) e98972
  • 62 Montecucco F, Bauer I, Braunersreuther V. , et al. Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction. Antioxid Redox Signal 2013; 18 (06) 630-641
  • 63 Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res 2009; 81 (02) 370-380
  • 64 Moschen AR, Kaser A, Enrich B. , et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 2007; 178 (03) 1748-1758
  • 65 Dahl TB, Yndestad A, Skjelland M. , et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 2007; 115 (08) 972-980
  • 66 Kocelak P, Olszanecka-Glinianowicz M, Owczarek A. , et al. Plasma visfatin/nicotinamide phosphoribosyltransferase levels in hypertensive elderly - results from the PolSenior substudy. J Am Soc Hypertens 2015; 9 (01) 1-8
  • 67 Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8 (03) 349-369
  • 68 Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. ; Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000; 342 (03) 154-160
  • 69 Mortensen SA, Rosenfeldt F, Kumar A. , et al; Q-SYMBIO Study Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2014; 2 (06) 641-649
  • 70 Aurich AC, Niemann B, Pan R. , et al. Age-dependent effects of high fat-diet on murine left ventricles: role of palmitate. Basic Res Cardiol 2013; 108: 369
  • 71 Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 2000; 35 (6–7): 811-820
  • 72 Gottlieb RA, Finley KD, Mentzer Jr RM. Cardioprotection requires taking out the trash. Basic Res Cardiol 2009; 104 (02) 169-180
  • 73 Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132 (01) 27-42
  • 74 Chen L, Knowlton AA. Mitochondrial dynamics in heart failure. Congest Heart Fail 2011; 17 (06) 257-261
  • 75 Lee S, Jeong SY, Lim WC. , et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 2007; 282 (31) 22977-22983
  • 76 Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 2009; 84 (01) 91-99
  • 77 Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 2010; 45 (02) 138-148
  • 78 Nisoli E, Tonello C, Cardile A. , et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310 (5746): 314-317
  • 79 López-Lluch G, Hunt N, Jones B. , et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 2006; 103 (06) 1768-1773
  • 80 Wohlgemuth SE, Julian D, Akin DE. , et al. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res 2007; 10 (03) 281-292
  • 81 Carreira RS, Lee Y, Ghochani M, Gustafsson AB, Gottlieb RA. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 2010; 6 (04) 462-472
  • 82 Pinotti MF, Leopoldo AS, Silva MD. , et al. A comparative study of myocardial function and morphology during fasting/refeeding and food restriction in rats. Cardiovasc Pathol 2010; 19 (05) e175-e182
  • 83 Hancock CR, Han DH, Higashida K, Kim SH, Holloszy JO. Does calorie restriction induce mitochondrial biogenesis? A reevaluation. FASEB J 2011; 25 (02) 785-791
  • 84 Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19 (01) 49-63
  • 85 Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18 (49) 6853-6866
  • 86 Simm A. Protein glycation during aging and in cardiovascular disease. J Proteomics 2013; 92: 248-259
  • 87 Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M. TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med 2006; 6 (03) 351-358
  • 88 Li SY, Du M, Dolence EK. , et al. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell 2005; 4 (02) 57-64
  • 89 Daoud S, Schinzel R, Neumann A. , et al. Advanced glycation endproducts: activators of cardiac remodeling in primary fibroblasts from adult rat hearts. Mol Med 2001; 7 (08) 543-551
  • 90 Simm A, Müller B, Nass N. , et al. Protein glycation - between tissue aging and protection. Exp Gerontol 2015; 68: 71-75
  • 91 Lai YL, Aoyama S, Nagai R, Miyoshi N, Ohshima H. Inhibition of L-arginine metabolizing enzymes by L-arginine-derived advanced glycation end products. J Clin Biochem Nutr 2010; 46 (02) 177-185
  • 92 Park L, Raman KG, Lee KJ. , et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 1998; 4 (09) 1025-1031
  • 93 Koyama H, Shoji T, Fukumoto S. , et al. Low circulating endogenous secretory receptor for AGEs predicts cardiovascular mortality in patients with end-stage renal disease. Arterioscler Thromb Vasc Biol 2007; 27 (01) 147-153
  • 94 Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 2004; 64 (05) 459-470
  • 95 Zieman SJ, Melenovsky V, Clattenburg L. , et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 2007; 25 (03) 577-583
  • 96 Hartog JW, Willemsen S, van Veldhuisen DJ. , et al; BENEFICIAL investigators. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail 2011; 13 (08) 899-908
  • 97 Shinmura K, Tamaki K, Sano M. , et al. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 2011; 109 (04) 396-406
  • 98 Boily G, Seifert EL, Bevilacqua L. , et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008; 3 (03) e1759
  • 99 Planavila A, Dominguez E, Navarro M. , et al. Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell Cardiol 2012; 53 (04) 521-531
  • 100 Morselli E, Maiuri MC, Markaki M. , et al. Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010; 1: e10
  • 101 Gerhart-Hines Z, Rodgers JT, Bare O. , et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007; 26 (07) 1913-1923
  • 102 Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434 (7029): 113-118
  • 103 Hsu CP, Zhai P, Yamamoto T. , et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010; 122 (21) 2170-2182
  • 104 Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005; 280 (14) 13560-13567
  • 105 Palacios OM, Carmona JJ, Michan S. , et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 2009; 1 (09) 771-783
  • 106 Pillai VB, Sundaresan NR, Kim G. , et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010; 285 (05) 3133-3144
  • 107 Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119 (09) 2758-2771
  • 108 Koentges C, Pfeil K, Meyer-Steenbuck M. , et al. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol 2016; 94 (01) 72-80
  • 109 Cantó C, Gerhart-Hines Z, Feige JN. , et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458 (7241): 1056-1060
  • 110 Niemann B, Pan R, Teschner M, Boening A, Silber RE, Rohrbach S. Age and obesity-associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Exp Gerontol 2013; 48: 55-63
  • 111 Niemann B, Pan R, Teschner M, Boening A, Silber RE, Rohrbach S. Age and obesity-associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Exp Gerontol 2013; 48 (01) 55-63
  • 112 Russell III RR, Li J, Coven DL. , et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 2004; 114 (04) 495-503
  • 113 Um JH, Park SJ, Kang H. , et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59 (03) 554-563