Synthesis 2019; 51(02): 334-358
DOI: 10.1055/s-0037-1609635
review
© Georg Thieme Verlag Stuttgart · New York

Cu(III)-Mediated Aerobic Oxidations

Kenneth Virgel N. Esguerra
a   Department of Chemistry, University of California–Berkeley, Berkeley, CA 94720, USA
,
b   Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada   Email: jean-philip.lumb@mcgill.ca
› Author Affiliations
Financial support was provided by the Natural Sciences and Engineering Council of Canada (NSERC, J.-P.L.). K.V.N.E acknowledges NSERC for a PDF scholarship.
Further Information

Publication History

Received: 19 August 2018

Accepted after revision: 07 October 2018

Publication Date:
03 December 2018 (online)


Abstract

CuIII species have been invoked in many copper-catalyzed transformations including cross-coupling reactions and oxidation reactions. In this review, we will discuss seminal discoveries that have advanced our understanding of the CuI/CuIII redox cycle in the context of C–C and C–heteroatom aerobic cross-coupling reactions, as well as C–H oxidation reactions mediated by CuIII–dioxygen adducts.

1 General Introduction

2 Early Examples of CuIII Complexes

3 Aerobic CuIII-Mediated Carbon–Heteroatom Bond-Forming Reactions

4 Aerobic CuIII-Mediated Carbon–Carbon Bond-Forming Reactions

5 Bioinorganic Studies of CuIII Complexes from CuI and O2

5.1 O2 Activation

5.2 Biomimetic CuIII Complexes from CuI and Dioxygen

5.2.1 Type-3 Copper Enzymes and Dinuclear Cu Model Complexes

5.2.2 Particulate Methane Monooxygenase and Di- and Trinuclear Cu Model Complexes

5.2.3 Dopamine–β-Monooxygenase and Mononuclear Cu Model Complexes

6 Conclusion

 
  • References

    • 1a Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 1b Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 2a Hruszkewycz D, McCann S, Stahl SS. Cu-Catalyzed Aerobic Oxidation: Overview and New Developments. In Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. Stahl SS, Alsters PL. Wiley-VCH; Weinheim: 2016: 67-83
    • 2b McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756
    • 2c Hickman AJ, Sanford MS. Nature (London) 2012; 484: 177
    • 2d Casitas A, Ribas X. Chem. Sci. 2013; 4: 2301
    • 2e Casitas A, Ribas X. Aromatic/Vinylic Finkelstein Reaction . In Copper-Mediated Cross-Coupling Reactions . Evano G, Blanchard N. John Wiley & Sons; Hoboken: 2013: 239-249
    • 3a Esguerra KV. N, Lumb JP. Angew. Chem. Int. Ed. 2018; 57: 1514
    • 3b See YY, Herrmann AT, Aihara Y, Baran PS. J. Am. Chem. Soc. 2015; 137: 13776
    • 3c Zweig JE, Kim DE, Newhouse TR. Chem. Rev. 2017; 117: 11680
    • 4a Smith LI. Chem. Rev. 1940; 27: 287
    • 4b Zakaria Z, Kamarudin SK. Renewable Sustainable Energy Rev. 2016; 65: 250
    • 5a Hay AS. J. Polym. Sci., Part A: Polym. Chem. 1998; 36: 505
    • 5b Sindhu KS, Anilkumar G. RSC Adv. 2014; 4: 27867
  • 6 Sperotto E, vanKlink GP. M, van Koten G, de Vries JG. Dalton Trans. 2010; 39: 10338
  • 7 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 8a Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 8b Nakamura E, Mori S. Angew. Chem. Int. Ed. 2000; 39: 3750
  • 9 Borden WT, Hoffmann R, Stuyver T, Chen B. J. Am. Chem. Soc. 2017; 139: 9010
  • 10 Hermans I. Overview of Radical Chain Oxidation Chemistry. In Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. Stahl SS, Alsters PL. Wiley-VCH; Weinheim: 2016: 3-14
    • 11a Keown W, Gary JB, Stack TD. P. J. Biol. Inorg. Chem. 2017; 22: 289
    • 11b Casitas A, Ribas X. The Bioinorganic and Organometallic Chemistry of Copper(III). In Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life. Pignataro B. Wiley-VCH; Weinheim: 2010: 31-52
    • 12a Lewis EA, Tolman WB. Chem. Rev. 2004; 104: 1047
    • 12b Mirica LM, Ottenwaelder X, Stack TD. P. Chem. Rev. 2004; 104: 1013
    • 12c Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Chem. Rev. 2017; 117: 2059
    • 12d Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem. Rev. 2014; 114: 3659
  • 13 Cunningham KL, McNett KM, Pierce RA, Davis KA, Harris HH, Falck DM, McMillin DR. Inorg. Chem. 1997; 36: 608
  • 14 Gschwind RM. Chem. Rev. 2008; 108: 3029
  • 15 Kokoszka G, Karlin KD, Padula F, Baranowski J, Goldstein C. Inorg. Chem. 1984; 23: 4378
  • 16 Gärtner T, Henze W, Gschwind RM. J. Am. Chem. Soc. 2007; 129: 11362
  • 17 Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ. J. Am. Chem. Soc. 2007; 129: 7208
    • 18a DuBois JL, Mukherjee P, Stack TD. P, Hedman B, Solomon EI, Hodgson KO. J. Am. Chem. Soc. 2000; 122: 5775
    • 18b Sarangi R, DeBeer GS, Rudd DJ, Szilagyi RK, Ribas X, Rovira C, Almeida M, Hodgson KO, Hedman B, Solomon EI. J. Am. Chem. Soc. 2007; 129: 2316
    • 19a Hestermann K, Hoppe R. Z. Anorg. Allg. Chem. 1969; 367: 249
    • 19b Scholder R, Voelskow U. Z. Anorg. Allg. Chem. 1951; 266: 256
    • 19c Magee JS. Jr, Wood RH. Can. J. Chem. 1965; 43: 1234
    • 20a Bour JJ, Steggerda JJ. Chem. Commun. 1967; 85
    • 20b Steggerda JJ, Bour JJ, Birker PJ. M. W. L. Inorg. Chem. 1971; 10: 1202
    • 21a Cervera B, Sanz JL, Ibañez MJ, Vila G, Lloret F, Julve M, Ruiz R, Ottenwaelder X, Aukauloo A, Poussereau S, Journaux Y, Muñoz MC. J. Chem. Soc., Dalton Trans. 1998; 781
    • 21b Ruiz R, Surville-Barland C, Aukauloo A, Anxolabehere-Mallart E, Journaux Y, Cano J, Muñoz MC. J. Chem. Soc., Dalton Trans. 1997; 745
  • 22 Hanss J, Beckmann A, Krüger H.-J. Eur. J. Inorg. Chem. 1999; 163
  • 23 Margerum DW, Chellappa KL, Bossu FP, Burce GL. J. Am. Chem. Soc. 1975; 97: 6894
    • 24a Anson FC, Collins TJ, Richmond TG, Santarsiero BD, Toth JE, Treco BG. R. T. J. Am. Chem. Soc. 1987; 109: 2974
    • 24b McDonald MR, Scheper WM, Lee HD, Margerum DW. Inorg. Chem. 1995; 34: 229
    • 24c Hinton JP, Margerum DW. Inorg. Chem. 1986; 25: 3248
    • 24d Diaddario LL, Robinson WR, Margerum DW. Inorg. Chem. 1983; 22: 1021
  • 25 Fang Y, Senge MO, Van Caemelbecke E, Smith KM, Medforth CJ, Zhang M, Kadish KM. Inorg. Chem. 2014; 53: 10772
    • 26a Wasbotten IH, Wondimagegn T, Ghosh A. J. Am. Chem. Soc. 2002; 124: 8104
    • 26b Will S, Lex J, Vogel E, Schmickler H, Gisselbrecht J.-P, Haubtmann C, Bernard M, Gross M. Angew. Chem., Int. Ed. Engl. 1997; 36: 357
    • 26c Fox JP, Ramdhanie B, Zareba AA, Czernuszewicz RS, Goldberg DP. Inorg. Chem. 2004; 43: 6600
    • 26d Brückner C, Briñas RP, Krause Bauer JA. Inorg. Chem. 2003; 42: 4495
  • 27 Willert-Porada MA, Burton DJ, Baenziger NC. J. Chem. Soc., Chem. Commun. 1989; 1633
  • 28 Naumann D, Roy T, Tebbe KF, Crump W. Angew. Chem., Int. Ed. Engl. 1993; 32: 1482
  • 29 Eujen R, Hoge B, Brauer DJ. J. Organomet. Chem. 1996; 519: 7
  • 30 Hannigan SF, Lum JS, Bacon JW, Moore C, Golen JA, Rheingold AL, Doerrer LH. Organometallics 2013; 32: 3429
  • 31 Putau A, Brand H, Koszinowski K. J. Am. Chem. Soc. 2012; 134: 613
  • 32 Yoshikai N, Nakamura E. Chem. Rev. 2012; 112: 2339
    • 33a Mondal S. ChemTexts 2016; 2: 17
    • 33b Giri R, Brusoe A, Troshin K, Wang JY, Font M, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 793
    • 34a King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 34b Huffman LM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
    • 34c Ribas X, Jackson DA, Donnadieu B, Mahía J, Parella T, Xifra R, Hedman B, Hodgson KO, Llobet A, Stack TD. P. Angew. Chem. Int. Ed. 2002; 41: 2991
    • 35a Ribas X, Calle C, Poater A, Casitas A, Gómez L, Xifra R, Parella T, Benet-Buchholz J, Schweiger A, Mitrikas G, Solà M, Llobet A, Stack TD. P. J. Am. Chem. Soc. 2010; 132: 12299
    • 35b Xifra R, Ribas X, Llobet A, Poater A, Duran M, Solà M, Stack TD. P, Benet-Buchholz J, Donnadieu B, Mahía J, Parella T. Chem. Eur. J. 2005; 11: 5146
    • 36a Cohen T, Cristea I. J. Am. Chem. Soc. 1976; 98: 748
    • 36b Cohen T, Herman G, Falck JR, Mura AJ. J. Org. Chem. 1975; 40: 812
    • 37a Yao B, Wang D.-X, Huang Z.-T, Wang M.-X. Chem. Commun. 2009; 2899
    • 37b Yao B, Wang Z.-L, Zhang H, Wang D.-X, Zhao L, Wang M.-X. J. Org. Chem. 2012; 77: 3336
  • 38 Yao B, Liu Y, Zhao L, Wang D.-X, Wang M.-X. J. Org. Chem. 2014; 79: 11139
  • 39 Liu Y, Zhang Q, Guo Q.-H, Wang M.-X. J. Org. Chem. 2016; 81: 10404
  • 40 Long C, Zhao L, You J.-S, Wang M.-X. Organometallics 2014; 33: 1061
  • 41 Liu Y, Long C, Zhao L, Wang M.-X. Org. Lett. 2016; 18: 5078
  • 42 Zhang H, Zhao L, Wang D.-X, Wang M.-X. Org. Lett. 2013; 15: 3836
  • 43 Zhang Q, Wang M.-X. Org. Chem. Front. 2017; 4: 283
  • 44 Wang Z.-L, Zhao L, Wang M.-X. Chem. Commun. 2012; 48: 9418
  • 45 Wang Z.-L, Zhao L, Wang M.-X. Org. Lett. 2012; 14: 1472
  • 46 Wang Z.-L, Zhao L, Wang M.-X. Org. Lett. 2011; 13: 6560
  • 47 Zhang H, Yao B, Zhao L, Wang D.-X, Xu B.-Q, Wang M.-X. J. Am. Chem. Soc. 2014; 136: 6326
  • 48 Li G.-b, Zhang C, Song C, Ma Y.-d. Beilstein J. Org. Chem. 2018; 14: 155
  • 49 Zhang S.-L, Bie W.-F. RSC Adv. 2016; 6: 70902
  • 50 Romine AM, Nebra N, Konovalov AI, Martin E, Benet-Buchholz J, Grushin VV. Angew. Chem. Int. Ed. 2015; 54: 2745
  • 51 Zhang S.-L, Wan H.-X, Bie W.-F. Org. Lett. 2017; 19: 6372
  • 52 Jacquet J, Chaumont P, Gontard G, Orio M, Vezin H, Blanchard S, Desage-El Murr M, Fensterbank L. Angew. Chem. Int. Ed. 2016; 55: 10712
    • 53a Schröder D, Schwarz H. Reactivity Concepts for Oxidation Catalysis: Spin and Stoichiometry Problems in Dioxygen Activation. In Essays in Contemporary Chemistry: From Molecular Structure towards Biology. 131. Quinkert G, Kisakürek MV. Verlag Helvetica Chimica Acta/Wiley-VCH; Switzerland/Weinheim: 2007
    • 53b Nebe T, Xu J.-Y, Schindler S. Iron Complexes and Dioxygen Activation. In Activating Unreactive Substrates: The Role of Secondary Interactions. Bolm C, Hahn FE. Wiley-VCH; Weinheim: 2009: 39-50
  • 54 Liu JL, Diaz DE, Quist DA, Karlin KD. Isr. J. Chem. 2016; 56: 738
    • 55a Tyeklar Z, Karlin KD. Acc. Chem. Res. 1989; 22: 241
    • 55b Decker A, Solomon EI. Curr. Opin. Chem. Biol. 2005; 9: 152
    • 56a Que L, Tolman WB. Nature (London) 2008; 455: 333
    • 56b Tolman WB. Acc. Chem. Res. 1997; 30: 227
    • 56c Yee GM, Tolman W. Transition Metal Complexes and the Activation of Dioxygen. In Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Kroneck PM. H, Sosa Torres ME. Springer International; Switzerland: 2015: 131-180
    • 56d Hatcher LQ, Karlin KD. J. Biol. Inorg. Chem. 2004; 9: 669
    • 56e Karlin KD, Gultneh Y. Prog. Inorg. Chem. 1987; 35: 219
    • 56f Hatcher LQ, Karlin KD. Adv. Inorg. Chem. 2006; 58: 131
    • 56g Rolle CJ. III, Saracini C, Karlin KD. Copper: Hemocyanin/Tyrosinase Models. In Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons: Hoboken, 2014 .
    • 56h Mahadevan V, Gebbink RJ. M. K, Stack TD. P. Curr. Opin. Chem. Biol. 2000; 4: 228
    • 56i Rolff M, Schottenheim J, Decker H, Tuczek F. Chem. Soc. Rev. 2011; 40: 4077
    • 57a Solomon EI, Sundaram UM, Machonkin TE. Chem. Rev. 1996; 96: 2563
    • 57b Metz M, Solomon EI. J. Am. Chem. Soc. 2001; 123: 4938
    • 58a Cruse RW, Kaderli S, Karlin KD, Zuberbuehler AD. J. Am. Chem. Soc. 1988; 110: 6882
    • 58b Nasir MS, Cohen BI, Karlin KD. J. Am. Chem. Soc. 1992; 114: 2482
  • 59 Mahapatra S, Halfen JA, Wilkinson EC, Pan G, Cramer CJ, Que LJr, Tolman WB. J. Am. Chem. Soc. 1995; 117: 8865
  • 60 Kitajima N, Fujisawa K, Morooka Y, Toriumi K. J. Am. Chem. Soc. 1989; 111: 8975
  • 61 Baldwin MJ, Root DE, Pate JE, Fujisawa K, Kitajima N, Solomon EI. J. Am. Chem. Soc. 1992; 114: 10421
  • 62 Karlin KD, Hayes JC, Gultneh Y, Cruse RW, McKown JW, Hutchinson JP, Zubieta J. J. Am. Chem. Soc. 1984; 106: 2121
  • 63 Hatcher LQ, Vance MA, Narducci Sarjeant AA, Solomon EI, Karlin KD. Inorg. Chem. 2006; 45: 3004
  • 64 Garcia-Bosch I, Cowley RE, Díaz DE, Peterson RL, Solomon EI, Karlin KD. J. Am. Chem. Soc. 2017; 139: 3186
  • 65 Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young VG. Jr, Que LJr, Zuberbühler AD, Tolman WB. Science (Washington, D. C.) 1996; 271: 1397
  • 66 Que LJr, Tolman WB. Angew. Chem. Int. Ed. 2002; 41: 1114
    • 67a Mirica LM, Rudd DJ, Vance MA, Solomon EI, Hodgson KO, Hedman B, Stack TD. P. J. Am. Chem. Soc. 2006; 128: 2654
    • 67b Ottenwaelder X, Rudd DJ, Corbett MC, Hodgson KO, Hedman B, Stack TD. P. J. Am. Chem. Soc. 2006; 128: 9268
  • 68 Paul PP, Tyeklar Z, Jacobson RR, Karlin KD. J. Am. Chem. Soc. 1991; 113: 5322
  • 69 Kodera M, Kajita Y, Tachi Y, Katayama K, Kano K, Hirota S, Fujinami S, Suzuki M. Angew. Chem. Int. Ed. 2004; 43: 334
    • 70a Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TD. P. Science (Washington, D. C.) 2005; 308: 1890
    • 70b Op’t Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TD. P, Solomon EI. J. Am. Chem. Soc. 2009; 131: 6421
  • 71 Citek C, Lyons CT, Wasinger EC, Stack TD. P. Nat. Chem. 2012; 4: 317
  • 72 Goswami VE, Walli A, Forster M, Dechert S, Demeshko S, Holthausen MC, Meyer F. Chem. Sci. 2017; 8: 3031
  • 73 Itoh S, Kumei H, Taki M, Nagatomo S, Kitagawa T, Fukuzumi S. J. Am. Chem. Soc. 2001; 123: 6708
  • 74 Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TD. P. J. Am. Chem. Soc. 2002; 124: 9332
  • 75 Henson MJ, Mukherjee P, Root DE, Stack TD. P, Solomon EI. J. Am. Chem. Soc. 1999; 121: 10332
  • 76 Askari MS, Esguerra KV. N, Lumb J.-P, Ottenwaelder X. Inorg. Chem. 2015; 54: 8665
  • 77 Chiang L, Keown W, Citek C, Wasinger EC, Stack TD. P. Angew. Chem. Int. Ed. 2016; 55: 10453
  • 78 Company A, Palavicini S, Garcia-Bosch I, Mas-Ballesté R, Que LJr, Rybak-Akimova EV, Casella L, Ribas X, Costas M. Chem. Eur. J. 2008; 14: 3535
  • 79 Herres-Pawlis S, Verma P, Haase R, Kang P, Lyons CT, Wasinger EC, Flörke U, Henkel G, Stack TD. P. J. Am. Chem. Soc. 2009; 131: 1154
  • 80 Jozwiuk A, Ünal EA, Leopold S, Boyd JP, Haryono M, Kurowski N, Escobar FV, Hildebrandt P, Lach J, Heinemann FW, Wiedemann D, Irran E, Grohmann A. Eur. J. Inorg. Chem. 2012; 3000
    • 81a Battaini G, Monzani E, Casella L, Lonardi E, Tepper AW. J. W, Canters GW, Bubacco L. J. Biol. Chem. 2002; 277: 44606
    • 81b Spada A, Palavicini S, Monzani E, Bubacco L, Casella L. Dalton Trans. 2009; 6468
  • 82 Nasir MS, Cohen BI, Karlin KD. Inorg. Chim. Acta 1990; 176: 185
  • 83 Gelling OJ, Feringa BL. Recl. Trav. Chim. Pays-Bas 1991; 110: 89
    • 85a Esguerra KV. N, Xu W, Lumb J.-P. Chem 2017; 2: 533
    • 85b Esguerra KV. N, Lumb J.-P. Chem. Eur. J. 2017; 23: 8596
    • 85c Esguerra KV. N, Lumb J.-P. ACS Catal. 2017; 7: 3477
    • 85d Huang Z, Askari MS, Esguerra KV. N, Dai T.-Y, Kwon O, Ottenwaelder X, Lumb J.-P. Chem. Sci. 2016; 7: 358
    • 85e Huang Z, Kwon O, Huang H, Fadli A, Marat X, Moreau M, Lumb J.-P. Angew. Chem. Int. Ed. 2018; 57: 11963
    • 85f Huang Z, Lumb J.-P. Angew. Chem. Int. Ed. 2016; 55: 11543
    • 85g Huang Z, Kwon O, Esguerra KV. N, Lumb J.-P. Tetrahedron 2015; 71: 5871
  • 86 Chan SI, Lu Y.-J, Nagababu P, Maji S, Hung M.-C, Lee MM, Hsu I.-J, Minh PD, Lai JC.-H, Ng KY, Ramalingam S, Yu SS.-F, Chang MK. Angew. Chem. Int. Ed. 2013; 52: 3731
  • 87 Hakemian AS, Rosenzweig AC. Annu. Rev. Biochem. 2007; 76: 223
  • 88 Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ. Angew. Chem. Int. Ed. 2001; 40: 2782
  • 89 Ikuno T, Zheng J, Vjunov A, Sanchez-Sanchez M, Ortuño MA, Pahls DR, Fulton JL, Camaioni DM, Li Z, Ray D, Mehdi BL, Browning ND, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Lercher JA. J. Am. Chem. Soc. 2017; 139: 10294
  • 90 Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC. Biochemistry 2011; 50: 10231
  • 91 Culpepper MA, Cutsail GE. III, Hoffman BM, Rosenzweig AC. J. Am. Chem. Soc. 2012; 134: 7640
  • 92 Cao L, Caldararu O, Rosenzweig AC, Ryde U. Angew. Chem. Int. Ed. 2018; 57: 162
  • 93 Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Chem. Rev. 2018; 118: 2593
    • 94a Yoshizawa K, Shiota Y. J. Am. Chem. Soc. 2006; 128: 9873
    • 94b Neisen BD, Gagnon NL, Dhar D, Spaeth AD, Tolman WB. J. Am. Chem. Soc. 2017; 139: 10220
  • 97 Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC. Biochemistry 2008; 47: 6793
  • 98 Citek C, Lin B.-L, Phelps TE, Wasinger EC, Stack TD. P. J. Am. Chem. Soc. 2014; 136: 14405
  • 99 Siegfried S. Eur. J. Inorg. Chem. 2000; 2311
    • 100a McCann SD, Lumb J.-P, Arndtsen BA, Stahl SS. ACS Cent. Sci. 2017; 3: 314
    • 100b Xu B, Hartigan EM, Feula G, Huang Z, Lumb J.-P, Arndtsen BA. Angew. Chem. Int. Ed. 2016; 55: 15802
  • 101 Zhu X.-Q, Li H.-R, Li Q, Ai T, Lu J.-Y, Yang Y, Cheng J.-P. Chem. Eur. J. 2003; 9: 871
  • 102 Citek C, Gary JB, Wasinger EC, Stack TD. P. J. Am. Chem. Soc. 2015; 137: 6991
  • 103 Allen FH. Acta Crystallogr., Sect. B. 2002; 58: 380
  • 104 Gary JB, Citek C, Brown TA, Zare RN, Wasinger EC, Stack TD. P. J. Am. Chem. Soc. 2016; 138: 9986
  • 105 Cole AP, Root DE, Mukherjee P, Solomon EI, Stack TD. P. Science (Washington, D. C.) 1996; 273: 1848
  • 106 Shiota Y, Yoshizawa K. Inorg. Chem. 2009; 48: 838
    • 107a Isaac JA, Gennarini F, López I, Thibon-Pourret A, David R, Gellon G, Gennaro B, Philouze C, Meyer F, Demeshko S, Le Mest Y, Réglier M, Jamet H, Le Poul N, Belle C. Inorg. Chem. 2016; 55: 8263
    • 107b Halvagar MR, Solntsev PV, Lim H, Hedman B, Hodgson KO, Solomon EI, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2014; 136: 7269
  • 108 Shiota Y, Juhász G, Yoshizawa K. Inorg. Chem. 2013; 52: 7907
    • 109a Chen PP.-Y, Chan SI. J. Inorg. Biochem. 2006; 100: 801
    • 109b Chan SI, Wang VC.-C, Lai JC.-H, Yu SS.-F, Chen PP.-Y, Chen KH.-C, Chen C.-L, Chan MK. Angew. Chem. Int. Ed. 2007; 46: 1992
  • 110 Liu YF, Du L. Inorg. Chem. 2018; 57: 3261
    • 111a Maji S, Lee JC.-M, Lu Y.-J, Chen C.-L, Hung M.-C, Chen PP.-Y, Yu SS.-F, Chan SI. Chem. Eur. J. 2012; 18: 3955
    • 111b Nagababu P, Maji S, Kumar MP, Chen PP.-Y, Yu SS.-F, Chan SI. Adv. Synth. Catal. 2012; 354: 3275
    • 112a Himes RA, Karlin KD. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 18877
    • 112b Snyder BE. R, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Chem. Rev. 2018; 118: 2718
  • 113 Levin EY, Levenberg B, Kaufman S. J. Biol. Chem. 1960; 235: 2080
  • 114 Klinman JP. Chem. Rev. 1996; 96: 2541
  • 115 Prigge ST, Eipper BA, Mains RE, Amzel LM. Science (Washington, D. C.) 2004; 304: 864
  • 116 Evans JP, Ahn K, Klinman JP. J. Biol. Chem. 2003; 278: 49691
  • 117 Chen P, Fujisawa K, Solomon EI. J. Am. Chem. Soc. 2000; 122: 10177
    • 118a Park GY, Lee Y, Lee D.-H, Woertink JS, Narducci Sarjeant AA, Solomon EI, Karlin KD. Chem. Commun. 2010; 46: 91
    • 118b Kim S, Lee JY, Cowley RE, Ginsbach JW, Siegler MA, Solomon EI, Karlin KD. J. Am. Chem. Soc. 2015; 137: 2796
  • 119 Yassaghi G, Andris E, Roithová J. ChemPhysChem 2017; 18: 2217
  • 120 Cramer CJ, Tolman WB, Theopold KH, Rheingold AL. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 3635
  • 121 Fujisawa K, Tanaka M, Moro-oka Y, Kitajima N. J. Am. Chem. Soc. 1994; 116: 12079
  • 122 Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI. J. Am. Chem. Soc. 2003; 125: 466
  • 123 Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S. Angew. Chem. Int. Ed. 2004; 43: 4360
  • 124 Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S. Angew. Chem. Int. Ed. 2006; 45: 3867
    • 125a Hatcher LQ, Lee D.-H, Vance MA, Milligan AE, Sarangi R, Hodgson KO, Hedman B, Solomon EI, Karlin KD. Inorg. Chem. 2006; 45: 10055
    • 125b Aboelella NW, Gherman BF, Hill LM. R, York JT, Holm N, Young VG, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2006; 128: 3445
    • 125c Lee Y, Lee D.-H, Park GY, Lucas HR, Narducci Sarjeant AA, Kieber-Emmons MT, Vance MA, Milligan AE, Solomon EI, Karlin KD. Inorg. Chem. 2010; 49: 8873
    • 125d Kim S, Ginsbach JW, Billah AI, Siegler MA, Moore CD, Solomon EI, Karlin KD. J. Am. Chem. Soc. 2014; 136: 8063
  • 126 Kunishita A, Ishimaru H, Nakashima S, Ogura T, Itoh S. J. Am. Chem. Soc. 2008; 130: 4244
    • 127a Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2002; 124: 10660
    • 127b Spencer DJ. E, Aboelella NW, Reynolds AM, Holland PL, Tolman WB. J. Am. Chem. Soc. 2002; 124: 2108
    • 128a Egan JW. Jr, Haggerty BS, Rheingold AL, Sendlinger SC, Theopold KH. J. Am. Chem. Soc. 1990; 112: 2445
    • 128b Qin K, Incarvito CD, Rheingold AL, Theopold KH. Angew. Chem. Int. Ed. 2002; 41: 2333
  • 129 Gubelmann MH, Williams AF. The Structure and Reactivity of Dioxygen Complexes of the Transition Metals. In Transition Metal Complexes Structures and Spectra. Springer; Heidelberg: 1984: 1-65
  • 130 Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG, Sarangi R, Rybak-Akimova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2004; 126: 16896
  • 131 Tomson NC, Williams KD, Dai X, Sproules S, DeBeer S, Warren TH, Wieghardt K. Chem. Sci. 2015; 6: 2474
  • 132 Reynolds AM, Gherman BF, Cramer CJ, Tolman WB. Inorg. Chem. 2005; 44: 6989
  • 133 Reynolds AM, Lewis EA, Aboelella NW, Tolman WB. Chem. Commun. 2005; 2014