Synthesis 2018; 50(11): 2150-2162
DOI: 10.1055/s-0037-1609715
short review
© Georg Thieme Verlag Stuttgart · New York

Metal-Catalyzed Oxidative Coupling of Ketones and Ketone Enolates

Sandip Murarka*
a  Department of Chemistry, Indian Institute of Technology Jodhpur, NH-65, Nagaur Road, Karwar-342037, Jodhpur District, Rajasthan, India   Email: [email protected]
,
Andrey P. Antonchick*
b  Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany   Email: [email protected]
c  Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
› Author Affiliations
A.P.A. acknowledges the support of DFG (Heisenberg scholarship AN 1064/4-1) and Boehringer Ingelheim Foundation (Plus 3).
Further Information

Publication History

Received: 25 February 2018

Accepted after revision: 21 March 2018

Publication Date:
03 May 2018 (online)


Abstract

Recent years have witnessed a significant advancement in the field of radical oxidative coupling of ketones towards the synthesis of highly useful synthetic building blocks, such as 1,4-dicarbonyl compounds, and biologically important heterocyclic and carbocyclic compounds. Besides oxidative homo- and cross-coupling of enolates, other powerful methods involving direct C(sp3)–H functionalizations of ketones­ have emerged towards the synthesis of 1,4-dicarbonyl compounds. Moreover, direct α-C–H functionalization of ketones has also allowed an efficient access to carbocycles and heterocycles. This review summarizes all these developments made since 2008 in the field of metal-catalyzed/promoted radical-mediated functionalization of ketones at the α-position.

1 Introduction

2 Synthesis of 1,4-Dicarbonyl Compounds

3 Synthesis of Heterocyclic Scaffolds

4 Synthesis of Carbocyclic Scaffolds

5 Conclusion

 
  • References

  • 1 Hodgson DM. Charlton A. Tetrahedron 2014; 70: 2207
    • 2a Csaky AG. Plumet J. Chem. Soc. Rev. 2001; 30: 313
    • 2b Guo F. Clift MD. Thomson RJ. Eur. J. Org. Chem. 2012; 4881
  • 3 Ivanoff D. Spasoff A. Bull. Soc. Chim. Fr. 1935; 2: 76
  • 4 Rathke MW. Lindert A. J. Am. Chem. Soc. 1971; 93: 4605
  • 5 Ito Y. Konoike T. Saegusa T. J. Am. Chem. Soc. 1975; 97: 2912
    • 6a Leffingwell JC. Chem. Commun. 1970; 357
    • 6b Fujii T. Hirao T. Ohshiro Y. Tetrahedron Lett. 1992; 33: 5823
    • 6c Koichi N. Tatsuo O. Ken T. Masaharu M. Chem. Lett. 1992; 21: 2099
    • 6d Yasushi K. Koichi N. Bull. Chem. Soc. Jpn. 1995; 68: 322
    • 7a Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
    • 7b Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 7c Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 7d Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 7e Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 7f Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 7g Yoo W.-J. Li C.-J. Top. Curr. Chem. 2010; 292: 281
    • 8a Kharasch MS. Jensen EV. Urry WH. J. Org. Chem. 1945; 10: 386
    • 8b Kharasch MS. McBay HC. Urry WH. J. Org. Chem. 1945; 10: 394
    • 8c Kharasch MS. McBay HC. Urry WH. J. Am. Chem. Soc. 1948; 70: 1269
  • 9 Ito Y. Konoike T. Harada T. Saegusa T. J. Am. Chem. Soc. 1977; 99: 1487
    • 10a Baran PS. DeMartino MP. Angew. Chem. Int. Ed. 2006; 45: 7083
    • 10b DeMartino MP. Chen K. Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
  • 11 Casey BM. Flowers RA. II. J. Am. Chem. Soc. 2011; 133: 11492
  • 12 Do H.-Q. Tran-Vu H. Daugulis O. Organometallics 2012; 31: 7816
  • 13 Guo F. Konkol LC. Thomson RJ. J. Am. Chem. Soc. 2011; 133: 18
  • 14 Schmittel M. Burghart A. Malisch W. Reising J. Söllner R. J. Org. Chem. 1998; 63: 396
  • 15 Clift MD. Taylor CN. Thomson RJ. Org. Lett. 2007; 9: 4667
  • 16 Avetta CT. Konkol LC. Taylor CN. Dugan KC. Stern CL. Thomson RJ. Org. Lett. 2008; 10: 5621
  • 17 Robinson EE. Thomson RJ. J. Am. Chem. Soc. 2018; 140: 1956
  • 18 You L. Liang X.-T. Xu L.-M. Wang Y.-F. Zhang J.-J. Su Q. Li Y.-H. Zhang B. Yang S.-L. Chen J.-H. Yang Z. J. Am. Chem. Soc. 2015; 137: 10120
  • 19 Clift MD. Thomson RJ. J. Am. Chem. Soc. 2009; 131: 14579
  • 20 Amaya T. Masuda T. Maegawa Y. Hirao T. Chem. Commun. 2014; 50: 2279
  • 21 Amaya T. Maegawa Y. Masuda T. Osafune Y. Hirao T. J. Am. Chem. Soc. 2015; 137: 10072
  • 22 Amaya T. Osafune Y. Maegawa Y. Hirao T. Chem. Asian J. 2017; 12: 1301
  • 23 Mao S. Gao Y.-R. Zhang S.-L. Guo D.-D. Wang Y.-Q. Eur. J. Org. Chem. 2015; 876
  • 24 Mao S. Zhu X.-Q. Gao Y.-R. Guo D.-D. Wang Y.-Q. Chem. Eur. J. 2015; 21: 11335
  • 25 Jang H.-Y. Hong J.-B. MacMillan DW. C. J. Am. Chem. Soc. 2007; 129: 7004
  • 26 Xie J. Huang Z.-Z. Chem. Commun. 2010; 46: 1947
  • 27 Yasu Y. Koike T. Akita M. Chem. Commun. 2012; 48: 5355
  • 28 Lan X.-W. Wang N.-X. Zhang W. Wen J.-L. Bai C.-B. Xing Y. Li Y.-H. Org. Lett. 2015; 17: 4460
  • 29 Geibel I. Christoffers J. Eur. J. Org. Chem. 2016; 918
    • 30a Baumann M. Baxendale IR. Ley SV. Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
    • 30b Wang C. Dong H. Hu W. Liu Y. Zhu D. Chem. Rev. 2012; 112: 2208
  • 31 Yang Y. Yao J. Zhang Y. Org. Lett. 2013; 15: 3206
  • 32 Ghosh M. Mishra S. Monir K. Hajra A. Org. Biomol. Chem. 2015; 13: 309
  • 33 Ghosh M. Mishra S. Hajra A. J. Org. Chem. 2015; 80: 5364
  • 34 Manna S. Antonchick AP. Org. Lett. 2015; 17: 4300
  • 35 Luo Z. Fang Y. Zhao Y. Liu P. Xu X. Feng C. Li Z. He J. RSC Adv. 2016; 6: 5436
  • 36 He C. Guo S. Ke J. Hao J. Xu H. Chen H. Lei A. J. Am. Chem. Soc. 2012; 134: 5766
  • 37 Daru J. Benda Z. Póti Á. Novák Z. Stirling A. Chem. Eur. J. 2014; 20: 15395
  • 38 Li P. Zhao J. Xia C. Li F. Org. Lett. 2014; 16: 5992
  • 39 Lou J. Wang Q. Wu K. Wu P. Yu Z. Org. Lett. 2017; 19: 3287
  • 40 Yi H. Liao Z. Zhang G. Zhang G. Fan C. Zhang X. Bunel EE. Pao C.-W. Lee J.-F. Lei A. Chem. Eur. J. 2015; 21: 18925
  • 41 Naveen T. Kancherla R. Maiti D. Org. Lett. 2014; 16: 5446
  • 42 Dey A. Ali MA. Jana S. Hajra A. J. Org. Chem. 2017; 82: 4812
  • 43 Wu Y. Huang Z. Luo Y. Liu D. Deng Y. Yi H. Lee J.-F. Pao C.-W. Chen J.-L. Lei A. Org. Lett. 2017; 19: 2330
  • 44 Naveen T. Deb A. Maiti D. Angew. Chem. Int. Ed. 2017; 56: 1111
    • 45a Chiba S. Wang Y.-F. Lapointe G. Narasaka K. Org. Lett. 2008; 10: 313
    • 45b Wang Y.-F. Toh KK. Chiba S. Narasaka K. Org. Lett. 2008; 10: 5019
  • 46 Donthiri RR. Samanta S. Adimurthy S. Org. Biomol. Chem. 2015; 13: 10113
    • 47a Chen DY. K. Pouwer RH. Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
    • 47b Tang P. Qin Y. Synthesis 2012; 44: 2969
    • 47c Bartoli G. Bencivenni G. Dalpozzo R. Synthesis 2014; 46: 979
    • 47d Schneider TF. Kaschel J. Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
  • 48 Manna S. Antonchick AP. Angew. Chem. Int. Ed. 2015; 54: 14845
  • 49 Manna S. Antonchick AP. Angew. Chem. Int. Ed. 2016; 55: 5290