Synlett 2018; 29(13): 1693-1699
DOI: 10.1055/s-0037-1610186
letter
© Georg Thieme Verlag Stuttgart · New York

Dissymmetric Bay-Functionalized Perylenediimides

Kapil Kumar
a  Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India   Email: [email protected]
,
Gaurav Bhargava
b  Department of Chemical Sciences, IK Gujral Punjab Technical University, Kapurthala-144601, Punjab, India
,
Subodh Kumar
a  Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India   Email: [email protected]
,
a  Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India   Email: [email protected]
› Author Affiliations
This work was supported by CSIR [02(0267)/16/EMR-II] and DST-SERB (EMR/2016/002239) grants.
Further Information

Publication History

Received: 29 March 2018

Accepted after revision: 17 May 2018

Publication Date:
20 June 2018 (online)


Abstract

We report the synthesis of perylenediimide (PDI)-based ­donor–acceptor hybrids through dissymmetric bay functionalization of PDIs. The dissymmetric bay-functionalized di- and trisubstituted PDIs were characterized by using one- and two-dimensional NMR spectroscopy. Density functional theory calculations revealed (i) an energy gap between the HOMO and LUMO in the range 2.14–2.34 eV, beneficial for charge-transfer properties; and (ii) a twist angle between the two naphthalene units in the range 17–26°, which might be beneficial for disruption of co-facial stacking of the PDI.

Supporting Information

 
  • References and Notes

  • 1 Würthner F. Chem. Commun. 2004; 1564
    • 2a Würthner F. Saha-Möller CR. Fimmel B. Ogi S. Leowanawat P. Schmidt D. Chem. Rev. 2016; 116: 962
    • 2b Langhals H. Heterocycles 1995; 40: 477
  • 3 Huang C. Barlow S. Marder SR. J. Org. Chem. 2011; 76: 2386
    • 6a Zhan X. Facchetti A. Barlow S. Marks TJ. Ratner MA. Wasielewski MR. Marder SR. Adv. Mater. (Weinheim, Ger.) 2011; 23: 268
    • 6b Li C. Wonneberger H. Adv. Mater. (Weinheim, Ger.) 2012; 24: 613
  • 7 Fernández-Lázaro F. Zink-Lorre N. Sastre-Santos A. J. Mater. Chem. A 2016; 4: 9336
  • 8 Li G. Zhao Y. Li J. Cao J. Zhu J. Sun XW. Zhang Q. J. Org. Chem. 2015; 80: 196
  • 9 Mende LS. Fechtenkötter A. Müllen K. Moons E. Frienda RH. MacKenzie JD. Science 2001; 293: 1119
    • 10a Ford WE. Kamat PV. J. Phys. Chem. 1987; 91: 6373
    • 10b Guo X. Facchetti A. Marks TJ. Chem. Rev. 2014; 114: 8943
    • 11a Singh P. Mittal LS. Kaur S. Kaur S. Bhargava G. Kumar S. Sens. Actuators, B 2018; 255: 478
    • 11b Singh P. Mittal LS. Singh H. Bhargava G. Kumar S. New J. Chem. 2017; 41: 10281
    • 11c Singh P. Mittal LS. Bhargava G. Kumar S. Chem. Asian J. 2017; 12: 890
    • 12a Kumar K. Bhargava G. Kumar S. Singh P. New J. Chem. 2018; 42: 1010
    • 12b Singh P. Kumar K. Bhargava G. Kumar S. J. Mater. Chem. C 2016; 4: 2488
    • 12c Singh P. Mittal LS. Vanita V. Kumar K. Walia A. Bhargava G. Kumar S. J. Mater. Chem. B 2016; 4: 3750
    • 13a Singh P. Mittal LS. Vanita V. Kumar R. Bhargava G. Walia A. Kumar S. Chem. Commun. 2014; 50: 13994
    • 13b Singh P. Mittal LS. Kumar S. Bhargava G. Kumar S. J. Fluoresc. 2014; 24: 909
    • 14a Marcia M. Singh P. Hauke F. Maggini M. Hirsch A. Org. Biomol. Chem. 2014; 12: 7045
    • 14b Weißenstein A. Würthner F. Chem. Commun. 2015; 51: 3415
    • 15a Grisci G. Mróz W. Catellani M. Kozma E. Galeotti F. ChemistrySelect 2016; 1: 3033
    • 15b Cheng H.-r. Qian Y. Sens. Actuators, B 2015; 219: 57
    • 16a Che Y. Yang X. Zang L. Chem. Commun. 2008; 1413
    • 16b Zhou R. Li B. Wu N. Gao G. You J. Lan J. Chem. Commun. 2011; 47: 6668
    • 17a Liu K. Xu Z. Yin M. Yang W. He B. Wei W. Shen J. J. Mater. Chem. B 2014; 2: 2093
    • 17b Sukul PK. Santra DC. Singh PK. Maji SK. Malik S. New J. Chem. 2015; 39: 5084
    • 17c Dwivedi AK. Pandeeswar M. Govindaraju T. ACS Appl. Mater. Interfaces 2014; 6: 21369
    • 18a Fabian J. Nakazumi H. Matsuoka M. Chem. Rev. 1992; 92: 1197
    • 18b Lin M.-J. Fimmel B. Radacki K. Würthner F. Angew. Chem. Int. Ed. 2011; 50: 10847
    • 19a Liu X. Cai Y. Huang X. Zhang R. Sun X. J. Mater. Chem. C 2017; 5: 3188
    • 19b Liu Z. Wu Y. Zhang Q. Gao X. J. Mater. Chem. A 2016; 4: 17604
    • 20a Li Y. Qing Z. Yu Y. Liu T. Jiang R. Li Y. Chem. Asian J. 2012; 7: 1934
    • 20b Li Y. Zheng H. Li Y. Wang S. Wu Z. Liu P. Gao Z. Liu H. Zhu D. J. Org. Chem. 2007; 72: 2878
    • 21a Wang R. Li G. Zhang A. Wang W. Cui G. Zhao J. Shi Z. Tang B. Chem. Commun. 2017; 53: 6918
    • 21b Tsai H.-Y. Chang C.-W. Chen K.-Y. Molecules 2014; 19: 327
    • 22a Singh P. Singh H. Vanita V. Sharma R. Bhargava G. Kumar S. ChemistrySelect 2016; 1: 6880
    • 22b Singh P. Singh H. Sharma R. Bhargava G. Kumar S. J. Mater. Chem. C 2016; 4: 11180
    • 22c Singh P. Singh H. Sharma R. Dhawan S. Singh P. Bhargava G. Kumar S. J. Photochem. Photobiol., A 2018; 353: 150
    • 23a Rajasingh P. Cohen R. Shirman E. Shimur LJ. W. Rybtchinski B. J. Org. Chem. 2007; 72: 5973
    • 23b Chen K.-Y. Chow TJ. Tetrahedron Lett. 2010; 51: 5959
  • 24 Dissymmetric Trisubstituted PDI 2; Typical ProcedurePDI 9 (300 mg, 0.51 mmol) was dissolved in CH2Cl2 (30 mL). HNO3 (771.56 μL, 8.60 mmol), CAN (280 mg, 0.51 mmol), and H2SO4 (984.95 μL, 9.65 mmol) were added, and the mixture was stirred at r.t. for 10 h. When the reaction was complete (TLC), H2O was added to the mixture and the organic layer was repeatedly extracted with water (pH 7.0), dried (Na2SO4), and concentrated. The crude product was purified by column chromatography (silica gel, 70% CHCl3–hexane).
  • 25 PDI 2Dark-blue solid; yield: 316 mg (0.468 mmol, 91.3%); Rf = 0.40 (CHCl3–hexane, 7:3). IR (ATR): 3287, 2966, 2933, 2875, 2360, 2126, 1701, 1661, 1595, 1543, 1459, 1411, 1357, 1313, 1250, 1200, 1070, 999, 928, 809 cm–1. 1H NMR (500 MHz, CDCl3, 25 °C): δ = 9.12 (s, 1 H, perylene ArH), 8.85 (s, 1 H, perylene ArH), 8.55 (d, J = 8.0 Hz, 1 H, perylene ArH), 8.53 (s, 1 H, perylene ArH), 8.30 (d, J = 8.0 Hz, 1 H, perylene ArH), 5.07 (d, J = 2.0 Hz, 2 H, OCH2), 5.01–5.06 (m, 2 H, ethylpropyl), 2.69 (t, J = 2.5 Hz, 1 H, –C≡H), 2.21–2.27 (m, 4 H, ethylpropyl), 1.92–1.98 (m, 4 H, ethylpropyl), 0.91 (t, J = 7.5 Hz, 6 H, ethylpropyl), 0.94 (t, J = 7.5 Hz, 6 H, ethylpropyl). 13C NMR (125 MHz, CDCl3, 25 °C): δ = 11.23, 11.35, 24.84, 25.03, 56.92, 58.35, 58.60, 75.76, 78.60, 116.31, 123.77, 126.68, 127.10, 127.44, 128.11, 129.56, 129.75, 148.07, 148.61, 157.79. Emission = 536 nm; Absorption = 561 nm (MeCN–H2O with f w = 50 vol%).
  • 26 Dissymmetric Disubstituted PDI 1; General ProcedurePDI 9 (50 mg, 0.085 mmol) was dissolved in CH2Cl2 (5 mL). HNO3 (42.86 μL, 0.48 mmol), CAN (22.22 mg, 0.04 mmol), and H2SO4 (22.80 μL, 0.21 mmol) were added, and the mixture was stirred at r.t. for 4 h. When the reaction was complete (TLC), H2O was added to the mixture and the organic layer was repeatedly extracted with H2O (pH 7.0), dried (Na2SO4), and concentrated. The crude product was purified by column chromatography (silica gel, 70% CHCl3–hexane).
  • 27 PDI 1Dark-purple solid; yield: 48.2 mg (0.076 mmol, 89.6%); Rf = 0.26 (CHCl3–hexane, 7:3); IR (ATR): 3265, 2924, 2853, 2361, 1699, 1659, 1594, 1461, 1412, 1315, 1251, 1070, 808, 743 cm–1. 1H NMR (500 MHz, CDCl3, 25 °C): δ = 9.05 (s, 1 H, perylene ArH), 8.78 (d, J = 8.0 Hz, 1 H, perylene ArH), 8.68 (d, J = 8.0 Hz, 1 H, perylene ArH), 8.64 (d, J = 8.0 Hz, 2 H, perylene ArH), 8.51 (s, 1 H, perylene ArH), 5.06–5.10 (m, 2 H, ethylpropyl), 5.05 (d, J = 2 Hz, 2 H, OCH2), 2.66 (t, J = 2.5 Hz, 1 H, –C≡H), 2.21–2.30 (m, 4 H, ethylpropyl), 1.90–1.99 (m, 4 H, ethylpropyl), 0.90–0.95 (m, 12 H, ethylpropyl). 13C NMR (125 MHz, CDCl3, 25 ºC): δ = 11.28, 11.35, 24.93, 25.04, 56.64, 58.05, 58.09, 76.14, 78.17, 117.84, 123.43, 124.30, 124.76, 126.88, 128.08, 128.45, 129.67, 132.15, 135.41, 148.04, 156.62. Emission = 542 nm; Absorption = 560 nm (MeCN–H2O with f w = 50 vol%).
  • 28 PDI 3Dark-purple solid; yield: 50.7 mg (0.078 mmol, 94.3%); Rf = 0.20 (CHCl3–hexane, 7:3). IR (ATR): 3453, 3301, 2964, 2874, 2360, 1698, 1658, 1593, 1537, 1460, 1415, 1314, 1264, 1201, 1071, 988, 850, 809, 744 cm–1. 1H NMR (400 MHz, CDCl3, 25 °C): δ = 9.08 (s, 1 H, perylene ArH), 8.79 (d, J = 9.6 Hz, 1 H, perylene ArH), 8.60–8.72 (m, 3 H, perylene ArH), 8.36 (s, 1 H, perylene ArH), 5.03–5.11 (m, 2 H, ethylpropyl), 4.49 (t, J = 9.6 Hz, 2 H, –OCH2), 2.81 (td, J = 9.6, 3.2 Hz, 2 H, –CH2), 2.19–2.34 (m, 4 H, ethylpropyl), 1.87–2.01 (m, 5 H, merged –CH + ethylpropyl), 0.90–0.96 (m, 12 H, ethylpropyl). 13C NMR (125 MHz, CDCl3): δ = 11.26, 11.28, 24.89, 25.01, 29.71, 57.94, 58.08, 58.23, 58.38, 128.83, 129.00, 129.55, 129.82, 131.29, 131.54, 141.03, 147.65, 147.82. Emission = 540 nm; Absorption = 550 nm (MeCN–H2O with f w = 50 vol%).
  • 29 PDI 4Dark-blue solid; yield: 54.2 mg (0.079 mmol, 94.3%); Rf = 0.27 (CHCl3–hexane, 7:3). IR (ATR): 3452, 3301, 3061, 2961, 2926, 2873, 2360, 1702, 1662, 1597, 1541, 1459, 1419, 1344, 1314, 1268, 1201, 1073, 1004, 926, 810, 742, 652 cm–1. 1H NMR (400 MHz, CDCl3, 25 °C): δ = 9.15 (s, 1 H, perylene ArH), 8.85 (s, 1 H, perylene ArH), 8.54 (d, J = 8.0 Hz, 1 H, perylene ArH), 8.39 (s, 1 H, perylene ArH), 8.30 (d, J = 8.0 Hz, 1 H, perylene ArH), 5.00–5.10 (m, 2 H, ethylpropyl), 4.53 (t, J = 7.2 Hz, 2 H, –OCH2), 2.81 (td, J = 7.2, 2.4 Hz, 2 H, –CH2), 2.19–2.30 (m, 4 H, ethylpropyl), 1.99 (t, J = 2.8 Hz, 1 H, –CH), 1.89–1.98 (m, 4 H, ethylpropyl), 0.90–0.95 (m, 12 H, ethylpropyl). 13C NMR (125 MHz, CDCl3): δ = 11.26, 11.32, 18.94, 24.86, 25.04, 58.36, 58.63, 68.04, 71.02, 78.76, 116.01, 123.54, 126.60, 127.53, 129.64, 129.80, 148.03, 159.02. Emission = 541 nm; Absorption = 565 nm (MeCN–H2O with f w = 50 vol%).
  • 30 PDI 5Brownish-red liquid; yield: 102.1 mg (0.15 mmol, 95.2%); Rf = 0.23 (CHCl3–hexane, 7:3). 1H NMR (500 MHz, CDCl3, 25 °C): δ = 10.15 (s, 1 H, CHO), 8.82 (s, 1 H, perylene ArH), 8.66 (t, J = 10.0 Hz, 2 H, perylene ArH), 8.24 (d, J = 10.0 Hz, 2 H, perylene-ArH), 8.06 (d, J = 10.0 Hz, 2 H, ArH), 7.82 (d, J = 10.0 Hz, 1 H, perylene ArH), 7.74 (d, J = 10.0 Hz, 1 H, ArH), 7.66 (d, J = 10.0 Hz, 1 H, ArH), 5.01–5.06 (m, 2 H, ethylpropyl), 2.19–2.28 (m, 4 H, ethylpropyl), 1.88–1.96 (m, 4 H, ethylpropyl), 0.87–0.94 (m, 12 H, ethylpropyl). 13C NMR (125 MHz, CDCl3): δ = 191.2, 147.9, 147.7, 141.0, 136.4, 134.9, 131.6, 131.3, 129.9, 129.6, 129.0, 128.9, 128.1, 58.4, 58.3, 58.1, 58.0, 36.9, 29.7, 25.0, 24.9, 19.2, 11.3, 11.3.
  • 31 Mishra A. Nayak PK. Ray D. Patankar MP. Narasimhan KL. Periasamy N. Tetrahedron Lett. 2006; 47: 4715