Synlett 2019; 30(02): 141-155
DOI: 10.1055/s-0037-1610294
account
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Molybdenum Hexacarbonyl-Mediated Gas-Free Carbonylative Reactions

Linda Åkerbladh
,
Luke R. Odell*
Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, 75123 Uppsala, Sweden   eMail: luke.odell@ilk.uu.se   eMail: mats.larhed@ilk.uu.se
,
Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, 75123 Uppsala, Sweden   eMail: luke.odell@ilk.uu.se   eMail: mats.larhed@ilk.uu.se
› Institutsangaben
We acknowledge the financial support from Uppsala University, Knut and Alice Wallenberg Foundation, the King Gustaf V and Queen ­Victoria Freemason Foundation, and the Kjell and Märta Beijer Foundation for support.
Weitere Informationen

Publikationsverlauf

Received: 08. August 2018

Accepted after revision: 03. September 2018

Publikationsdatum:
02. Oktober 2018 (online)


Abstract

This account summarizes Pd(0)-catalyzed Mo(CO)6-mediated gas-free carbonylative reactions published in the period October 2011 to May 2018. Presented reactions include inter- and intramolecular carbonylations, carbonylative cross-couplings, and carbonylative multicomponent reactions using Mo(CO)6 as a solid source of CO. The presented methodologies were developed mainly for small-scale applications, avoiding the problematic use of gaseous CO in a standard laboratory. In most cases, the reported Mo(CO)6-mediated carbonylations were conducted in sealed vials or by using two-chamber solutions.

1 Introduction

2 Recent Developments

2.1 New CO Sources

2.2 Two-Chamber System for ex Situ CO Generation

2.3 Multicomponent Carbonylations

3 Carbonylations with N and O Nucleophiles

4 Carbonylative Cross-Coupling Reactions with Organometallics

5 Carbonylative Cascade Reactions

6 Carbonylative Cascade, Multistep Reactions

7 Summary and Outlook

 
  • References

  • 1 Odell LR. Russo F. Larhed M. Synlett 2012; 5: 685
  • 2 GDCh-Ortsverband-Braunschweig; Angew. Chem. 1948; 60: 211
  • 3 Reppe W. Vetter H. Justus Liebigs Ann. Chem. 1953; 582: 133
  • 4 Schoenberg A. Bartoletti I. Heck RF. J. Org. Chem. 1974; 39: 3318
  • 5 Schoenberg A. Heck RF. J. Org. Chem. 1974; 39: 3327
  • 6 Brennführer A. Neumann H. Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 7 Rahman O. J. Label. Compd. Radiopharm. 2015; 58: 86
  • 8 Rotstein BH. Liang SH. Placzek MS. Hooker JM. Gee AD. Dollé F. Wilson AA. Vasdev N. Chem. Soc. Rev. 2016; 45: 4708
  • 9 Wu X. Neumann H. Beller M. Chem. Soc. Rev. 2011; 40: 4986
  • 10 Grigg R. Mutton SP. Tetrahedron 2010; 66: 5515
  • 11 Morimoto T. Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
    • 12a Friis SD. Lindhardt AT. Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
    • 12b Gautam P. Bhanage BM. Catal. Sci. Technol. 2015; 5: 4663
    • 12c Peng J.-P. Qi X. Wu X.-F. Synlett 2017; 28: 175
    • 12d Wang L. Sun W. Liu C. Chin. J. Chem. 2018; 36: 353
  • 13 Schareina T. Zapf A. Cotté A. Gotta M. Beller M. Adv. Synth. Catal. 2010; 352: 1205
  • 14 Ueda T. Konishi H. Manabe K. Org. Lett. 2012; 14: 3100
  • 15 Wang Y. Ren W. Li J. Wang H. Shi Y. Org. Lett. 2014; 16: 5960
  • 16 Konishi H. Manabe K. Synlett 2014; 25: 1971
    • 17a Willis MC. Chem. Rev. 2010; 110: 725
    • 17b Cao J. Zheng Z.-J. Xu Z. Xu L.-X. Coord. Chem. Rev. 2017; 336: 43
    • 17c Kuan SH. C. Sun W. Wang L. Xia C. Tay MG. Liu C. Adv. Synth. Catal. 2017; 359: 3484
  • 18 Brancour C. Fukuyama T. Mukai Y. Skrydstrup T. Ryu I. Org. Lett. 2013; 15: 2794
  • 19 Wan Y. Alterman M. Larhed M. Hallberg A. J. Org. Chem. 2002; 67: 6232
  • 20 Ueda T. Konishi H. Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
  • 21 Ueda T. Konishi H. Manabe K. Org. Lett. 2013; 15: 5370
  • 22 Yu B. Zhao Y. Zhang H. Xu J. Hao L. Gao X. Liu Z. Chem. Commun. 2014; 50: 2330
  • 23 Yu B. Yang Z. Zhao Y. Hao L. Zhang H. Gao X. Han B. Liu Z. Chem. Eur. J. 2016; 22: 1097
  • 24 Lin W.-H. Wu W.-C. Selvaraju M. Sun C.-M. Org. Chem. Front. 2017; 4: 392
  • 25 Suresh AS. Baburajan P. Ahmed M. Tetrahedron Lett. 2014; 55: 3482
  • 26 Kaiser NK. Hallberg A. Larhed M. J. Comb. Chem. 2002; 4: 109
  • 27 Wannberg J. Larhed M. J. Org. Chem. 2003; 68: 5750
  • 28 Letavic MA. Ly KS. Tetrahedron Lett. 2007; 48: 2339
  • 29 Roberts B. Liptrot D. Alcaraz L. Luker T. Stocks MJ. Org. Lett. 2010; 12: 4280
  • 30 Roberts B. Liptrot D. Luker T. Stocks MJ. Barber C. Webb N. Dods R. Martin B. Tetrahedron Lett. 2011; 52: 3793
  • 31 Spencer J. Anjum N. Patel H. Rathnam RP. Verma J. Synlett 2007; 16: 2557
  • 32 Hermange P. Lindhardt AT. Taaning RH. Bjerglund K. Lupp D. Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
  • 33 Friis SD. Taaning RH. Lindhardt AT. Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 18114
  • 34 Chow SY. Stevens MY. Åkerbladh L. Bergman S. Odell LR. Chem. Eur. J. 2016; 22: 9037
  • 35 Hansen SV. F. Ulven T. Org. Lett. 2015; 17: 2832
  • 36 Gockel SN. Hull KL. Org. Lett. 2015; 17: 3236
  • 37 Grushin VV. Alper H. Organometallics 1993; 12: 3846
  • 38 Nordeman P. Odell LR. Larhed M. J. Org. Chem. 2012; 77: 11393
  • 39 Begouin A. Queiroz MR. P. Eur. J. Org. Chem. 2009; 2820
  • 40 Yamazaki K. Kondo Y. J. Comb. Chem. 2004; 6: 121
  • 41 Åkerbladh L. Nordeman P. Wejdemar M. Odell LR. Larhed M. J. Org. Chem. 2015; 80: 1464
  • 42 Herrero MA. Wannberg J. Larhed M. Synlett 2004; 2335
  • 43 Skogh A. Fransson R. Sköld C. Larhed M. Sandström A. J. Org. Chem. 2013; 78: 12251
  • 44 Ugi I. Dömling A. Hörl W. Endeavour 1994; 18: 115
  • 45 Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
  • 46 Wang W. Dömling A. J. Comb. Chem. 2009; 11: 403
  • 47 Shen C. Wu XF. Chem. Eur. J. 2017; 23: 2973
  • 48 Mannich C. Krösche W. Arch. Pharm. 1912; 250: 647
  • 49 Strecker A. Justus Liebigs Ann. Chem. 1850; 75: 27
  • 50 Biginelli P. Gazz. Chim. Ital. 1893; 23: 360
  • 51 Kappe OC. Tetrahedron 1993; 49: 6937
  • 52 Passerini M. Gazz. Chim. Ital. 1921; 51: 126
  • 53 Passerini M. Gazz. Chim. Ital. 1921; 51: 181
  • 54 Ugi I. Meyr R. Fetzer U. Steinbrückner C. Angew. Chem. 1959; 71: 386
  • 55 Wu X.-F. RSC Adv. 2016; 6: 83831
  • 56 Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
  • 57 Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
  • 58 Sunderhaus JD. Martin SF. Chem. Eur. J. 2009; 15: 1300
  • 59 Dömling A. Chem. Rev. 2006; 106: 17
  • 60 Iizuka M. Kondo Y. Eur. J. Org. Chem. 2007; 5180
  • 61 Stonehouse JP. Chekmarev DS. Ivanova NV. Lang S. Pairaudeau G. Smith N. Stocks MJ. Sviridov SI. Utkina LM. Synlett 2008; 100
  • 62 Barnard CF. J. Organometallics 2008; 27: 5402
  • 63 Whitcombe NJ. Hii KK. Gibson SE. Tetrahedron 2001; 57: 7449
  • 64 Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis . John Wiley & Sons; New York: 2002
  • 65 Mane RS. Nordeman P. Odell LR. Larhed M. Tetrahedron Lett. 2013; 54: 6912
  • 66 Lian Z. Friis SD. Lindhardt AT. Skrydstrup T. Synlett 2014; 25: 1241
  • 67 Nordeman P. Chow SY. Odell A. Antoni G. Odell LR. Org. Biomol. Chem. 2017; 15: 4875
  • 68 Zhou F. Wang D.-S. Guan X. Driver TG. Angew. Chem. Int. Ed. 2017; 56: 4530
  • 69 Wang Z. Yin Z. Wu X.-F. Chem. Eur. J. 2017; 23: 15026
  • 70 Wang Z. Zhu F. Li Y. Wu X.-F. ChemCatChem 2017; 9: 94
  • 71 Wang Z. Yin Z. Zhu F. Li Y. Wu X.-F. ChemCatChem 2017; 9: 3637
  • 72 Chow SY. Stevens MY. Odell LR. J. Org. Chem. 2016; 81: 2681
  • 73 Chadha N. Silakari O. Eur. J. Med. Chem. 2017; 134: 159
  • 74 Wu X.-F. Oschatz S. Sharif M. Langer P. Synthesis 2015; 47: 2641
  • 75 Mamone M. Aziz J. Le Bescont J. Piguel S. Synthesis 2018; 50: 1521
  • 76 Wu X.-F. Oschatz S. Sharif M. Beller M. Langer P. Tetrahedron 2014; 70: 23
  • 77 Borhade SR. Sandström A. Arvidsson PI. Org. Lett. 2013; 15: 1056
  • 78 Wakchaure PB. Borhade SR. Sandström A. Arvidsson PI. Eur. J. Org. Chem. 2015; 213
  • 79 Belfrage AK. Wakchaure P. Larhed M. Sandström A. Eur. J. Org. Chem. 2015; 7069
  • 80 Hernando E. Villalva J. Martínez ÁM. Alonso I. Rodríguez N. Gómez Arrayás R. Carretero JC. ACS Catal. 2016; 6: 6868
  • 81 Chow SY. Odell LR. J. Org. Chem. 2017; 82: 2515
  • 82 Wang Z. Li Y. Zhu F. Wu X.-F. Adv. Synth. Catal. 2016; 358: 2855
  • 83 Taszarek M. Reissig H.-U. ChemistrySelect 2016; 1: 5712
  • 84 Lotesta SD. Marcus AP. Zheng Y. Leftheris K. Noto PB. Meng S. Kandpal G. Chen G. Zhou J. McKeever B. Bukhtiyarov Y. Zhao Y. Lala DS. Singh SB. McGeehan GM. Bioorg. Med. Chem. 2016; 24: 1384
  • 85 Jones D. Tellam J. Bresciani S. Wojno-Picon J. Cooper A. Tomkinson N. Synlett 2016; 28: 577
  • 86 Roslin S. De Rosa M. Deuther-Conrad W. Eriksson J. Odell LR. Antoni G. Brust P. Larhed M. Bioorg. Med. Chem. 2017; 25: 5095
  • 87 Patel H. Chuckowree I. Coxhead P. Guille M. Wang M. Zuckermann A. Williams RS. B. Librizzi M. Paranal RM. Bradner JE. Spencer J. MedChemComm 2014; 5: 1829
  • 88 Behrends M. Wallinder C. Wieckowska A. Guimond M.-O. Hallberg A. Gallo-Payet N. Larhed M. ChemistryOpen 2014; 3: 65
  • 89 Fernando DP. Jiao W. Polivkova J. Xiao J. Coffey SB. Rose C. Londregan A. Saenz J. Beveridge R. Zhang Y. Storer GE. Vrieze D. Erasga N. Jones R. Khot V. Cameron KO. McClure KF. Bhattacharya SK. Orr ST. M. Tetrahedron Lett. 2012; 53: 6351
  • 90 Lindgren AE. G. Öberg CT. Hillgren JM. Elofsson M. Eur. J. Org. Chem. 2016; 426
  • 91 Ono K. Banno H. Okaniwa M. Hirayama T. Iwamura N. Hikichi Y. Murai S. Hasegawa M. Hasegawa Y. Yonemori K. Hata A. Aoyama K. Cary DR. Bioorg. Med. Chem. 2017; 25: 2336
  • 92 Lang C. Gmeiner P. Synthesis 2013; 45: 2474
  • 93 Matera C. Quadri M. Sciaccaluga M. Pomè DY. Fasoli F. De Amici M. Fucile S. Gotti C. Dallanoce C. Grazioso G. Eur. J. Med. Chem. 2016; 108: 392
  • 94 Pagliaro M. Pandarus V. Ciriminna R. Béland F. Demma Carà P. ChemCatChem 2012; 4: 432
  • 95 Hajipour A.-R. Tavangar-Rizi Z. Iranpoor N. RSC Adv. 2016; 6: 78468
  • 96 Kikukawa K. Kono K. Wada FT. M. Chem. Lett. 1982; 35
  • 97 Echavarren AM. Stille JK. J. Am. Chem. Soc. 1988; 110: 1557
  • 98 Lindh J. Fardost A. Almeida M. Nilsson P. Tetrahedron Lett. 2010; 51: 2470
  • 99 Sävmarker J. Lindh J. Nilsson P. Tetrahedron Lett. 2010; 51: 6886
  • 100 Iranpoor N. Firouzabadi H. Etemadi-Davan E. J. Organomet. Chem. 2015; 794: 282
  • 101 Horvath IT. Rabai J. Science 1994; 266: 72
  • 102 Barthel-Rosa LP. Gladysz JA. Coord. Chem. Rev. 1999; 190-192: 587
  • 103 Ang WJ. Lo LC. Lam Y. Tetrahedron 2014; 70: 8545
  • 104 Wu L. Fang X. Liu Q. Jackstell R. Beller M. Wu X.-F. ACS Catal. 2014; 4: 2977
  • 105 Roslin S. Odell LR. Eur. J. Org. Chem. 2017; 1993
  • 106 Ishiyama T. Miyaura N. Suzuki A. Tetrahedron Lett. 1991; 32: 6923
  • 107 Ishiyama T. Murata M. Suzuki A. Norio M. J. Chem. Soc., Chem. Commun. 1995; 9: 295
  • 108 Ryu I. Kreimerman S. Araki F. Nishitani S. Oderaotoshi Y. Minakata S. Komatsu M. J. Am. Chem. Soc. 2002; 124: 3812
  • 109 Fusano A. Fukuyama T. Nishitani S. Inouye T. Ryu I. Org. Lett. 2010; 12: 2410
  • 110 Fusano A. Sumino S. Nishitani S. Inouye T. Morimoto K. Fukuyama T. Ryu I. Chem. Eur. J. 2012; 18: 9415
  • 111 Sumino S. Ui T. Ryu I. Org. Lett. 2013; 15: 3142
  • 112 Pye DR. Cheng L.-J. Mankad NP. Chem. Sci. 2017; 8: 4750
  • 113 Roslin S. Odell LR. Chem. Commun. 2017; 53: 6895
  • 114 Cho SK. Song JH. Hahn JT. il Jung D. Bull. Korean Chem. Soc. 2016; 37: 1567
  • 115 Wu XF. Schranck J. Neumann H. Beller M. Chem. Asian J. 2012; 7: 40
  • 116 Tamaru Y. Ochiai H. Yamada Y. Yoshida Z. Tetrahedron Lett. 1983; 24: 3869
  • 117 Yasui K. Fugami K. Tanaka S. Tamaru Y. J. Org. Chem. 1995; 60: 1365
  • 118 O’Keefe BM. Simmons N. Martin SF. Org. Lett. 2008; 10: 5301
  • 119 Jackson RF. W. Turner D. Block MH. J. Chem. Soc., Perkin Trans. 1 1997; 4: 865
  • 120 Motwani HV. Larhed M. Eur. J. Org. Chem. 2013; 4729
  • 121 Park A. Lee S. Org. Lett. 2012; 14: 1118
  • 122 Pyo A. Park A. Jung H. Lee S. Synthesis 2012; 44: 2885
  • 123 Wu XF. Sharif M. Shoaib K. Neumann H. Pews-Davtyan A. Langer P. Beller M. Chem. Eur. J. 2013; 19: 6230
  • 124 Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 125 Jafarpour F. Otaredi-Kashani A. ARKIVOC 2014; (iv): 193
  • 126 Ghosh P. Nandi AK. Das S. Tetrahedron Lett. 2018; 59: 2025
  • 127 Åkerbladh L. Odell LR. J. Org. Chem. 2016; 81: 2966
  • 128 Åkerbladh L. Chow SY. Odell LR. Larhed M. ChemistryOpen 2017; 6: 620
  • 129 Åkerbladh L. Schembri LS. Larhed M. Odell LR. J. Org. Chem. 2017; 82: 12520
  • 130 He L. Sharif M. Neumann H. Beller M. Wu X.-FA. Green Chem. 2014; 16: 3763
  • 131 Wu X.-F. Oschatz S. Sharif M. Flader A. Krey L. Beller M. Langer P. Adv. Synth. Catal. 2013; 355: 3581
  • 132 Kebede E. Tadikonda R. Nakka M. Inkollu B. Vidavalur S. Eur. J. Org. Chem. 2015; 5929
  • 133 Chen J. Natte K. Spannenberg A. Neumann H. Beller M. Wu X.-F. Chem. Eur. J. 2014; 20: 14189
  • 134 Chen J. Natte K. Wu X.-F. J. Organomet. Chem. 2016; 803: 9
  • 135 Lee S. Kim H.-S. Min H. Pyo A. Tetrahedron Lett. 2016; 57: 239
  • 136 Qi X. Yu F. Chen P. Liu G. Angew. Chem. Int. Ed. 2017; 56: 12692