CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 240-250
DOI: 10.1055/s-0037-1610378
feature
Copyright with the author

Alkylpotassium-Catalyzed Benzylic C–H Alkylation of Alkylarenes with Alkenes

Io Sato
,
Yasuhiro Yamashita*
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan   eMail: shu_kobayashi@chem.s.u-tokyo.ac.jp   eMail: yyamashita@chem.s.u-tokyo.ac.jp
,
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan   eMail: shu_kobayashi@chem.s.u-tokyo.ac.jp   eMail: yyamashita@chem.s.u-tokyo.ac.jp
› Institutsangaben
This work was partially supported by ACT-C, JST, and AMED (S.K.), and JSPS KAKENHI Grant Number JP 17H06448 (Y.Y.). I.S. thanks JSPS Research Fellowships for Young Scientists and MERIT program, The University of Tokyo, for financial support.
Weitere Informationen

Publikationsverlauf

Received: 17. Oktober 2018

Accepted: 18. Oktober 2018

Publikationsdatum:
26. November 2018 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

Catalytic benzylic C–H alkylation reactions of alkylarenes with alkenes such as β-substituted styrenes and vinylsilanes have been achieved by utilizing alkylpotassium as a catalyst. Various substituted toluene derivatives can be alkylated under mild reaction conditions to afford the desired functionalized hydrocarbons in moderate to high yields.

Supporting Information

 
  • References

  • 1 Vanjari R, Singh KN. Chem. Soc. Rev. 2015; 44: 8062

    • For selected examples, see:
    • 2a Ueda M, Kondoh E, Ito Y, Shono H, Kakiuchi M, Ichii Y, Kimura T, Miyoshi T, Naito T, Miyata O. Org. Biomol. Chem. 2011; 9: 2062
    • 2b Xie P, Xie Y, Qian B, Zhou H, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 9902
    • 2c Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689
    • 2d Curto JM, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 18
    • 2e Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
    • 2f Vasilopoulos A, Zultanski SL, Stahl SS. J. Am. Chem. Soc. 2017; 139: 7705
    • 2g Zhang W, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 7709
  • 3 Davies HM. L, Jin Q, Ren P, Kovalevsk AY. J. Org. Chem. 2002; 67: 4165
    • 4a Qrareya H, Ravelli D, Fagnoni M, Albini A. Adv. Synth. Catal. 2013; 355: 2891
    • 4b Ishida N, Masuda Y, Ishikawa N. Murakami M. 2017; 6: 669
  • 5 Takemoto S, Shibata E, Nakajima M, Yumoto Y, Shimamoto M, Matsuzaka H. J. Am. Chem. Soc. 2016; 138: 14836
  • 6 Quite recently, elegant visible light-mediated organocatalytic asymmetric addition reactions of toluene were reported, see: Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
    • 7a Comprehensive Organic Synthesis . Trost BM. Pergamon Press; Oxford: 1991
    • 7b Comprehensive Organic Synthesis . 2nd ed.; Knochel P, Molander GA. Elsevier Science; Amsterdam: 2014
    • 7c Kobayashi S, Matsubara R. Chem. Eur. J. 2009; 15: 10694
  • 8 An estimated value in DMSO, see: Bordwell FG, Algrim D, Vanier NR. J. Org. Chem. 1977; 42: 1817
  • 9 Schlosser M. Pure Appl. Chem. 1988; 60: 1627
  • 10 For a concept article, see: Yamashita Y, Kobayashi S. Chem. Eur. J. 2018; 24: 10
    • 11a Yamashita Y, Suzuki H, Kobayashi S. Org. Biomol. Chem. 2012; 10: 5750
    • 11b Sato I, Suzuki H, Yamashita Y, Kobayashi S. Org. Chem. Front. 2016; 3: 1241
    • 11c Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2015; 137: 4336
    • 11d Yamashita Y, Sato I, Suzuki H, Kobayashi S. Chem. Asian J. 2015; 10: 2143
    • 11e Suzuki H, Igarashi R, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2017; 56: 4520
    • 11f Yamashita Y, Igarashi R, Suzuki H, Kobayashi S. Synlett 2017; 28: 1287
    • 11g Yamashita Y, Minami K, Kobayashi S. Chem. Lett. 2018; 47: 690
    • 11h Yamashita Y, Igarashi R, Suzuki H, Kobayashi S. Org. Biomol. Chem. 2018; 16: 5969
  • 12 Yamashita Y, Suzuki H, Sato I, Hirata T, Kobayashi S. Angew. Chem. Int. Ed. 2018; 57: 6896

    • For selected examples of Strong Brønsted base catalyzed addition reactions with styrenes, see:
    • 13a Pines H, Kannan SV, Simonik J. J. Org. Chem. 1971; 36: 2311
    • 13b Rodriguez A, Bunlaksananusorn T, Knochel P. Org. Lett. 2000; 2: 3285
    • 13c Yamashita Y, Igarashi R, Suzuki H, Kobayashi S. Org. Biomol. Chem. 2018; 16: 5969
    • 13d Zhai DD, Zhang XY, Liu YF, Zheng L, Guan BT. Angew. Chem. Int. Ed. 2018; 57: 1650
    • 13e Liu YF, Zhai DD, Zhang XY, Guan BT. Angew. Chem. Int. Ed. 2018; 57: 8245
    • 14a Pines H, Wunderlich D. J. Am. Chem. Soc. 1958; 80: 6001
    • 14b Shabtai J, Pines H. J. Org. Chem. 1961; 26: 4225
    • 14c Shabtai J, Lewicki EM, Pines H. J. Org. Chem. 1962; 27: 2618
    • 14d Pines H. Acc. Chem. Res. 1974; 7: 155
  • 15 Steele BR, Screttas CG. J. Am. Chem. Soc. 2000; 122: 2391
  • 16 For preliminary results of catalytic addition reactions of toluene derivatives with β-substituted alkenes, see ref. 12.
  • 17 Schlosser M, Gorecka J, Castagnetti E. Eur. J. Org. Chem. 2003; 452
  • 18 Yttrium-catalyzed alkylations of p-methylanisole, see: Oyamada J, Hou Z. Angew. Chem. Int. Ed. 2012; 51: 12828
  • 19 Clegg W, Conway B, Graham DV, Hevia E, Kennedy AR, Mulvey RE, Russo L, Wright DS. Chem. Eur. J. 2009; 15: 7074
  • 20 Unkelbach C, O’Shea DF, Strohmann C. Angew. Chem. Int. Ed. 2014; 53: 553
  • 21 Hogan A.-ML, Tricotet T, Meek A, Khokhar SS, O’Shea DF. J. Org. Chem. 2008; 73: 6041
    • 22a Stipanovic B, Pines H. J. Chem. Soc. D 1969; 1361
    • 22b Pines H, Kannan SV, Simonik J. J. Org. Chem. 1971; 36: 2311
    • 22c Bunlaksananusorn T, Rodriguez AL, Knochel P. Chem. Commun. 2001; 745
    • 22d See alo ref. 11g
    • 22e See also ref. 11h.
  • 23 Zhou R, Goh YY, Liu H, Tao H, Li L, Wu J. Angew. Chem. Int. Ed. 2017; 56: 16621