CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 135-145
DOI: 10.1055/s-0037-1610397
short review
Copyright with the author

Recent Advances in Enantioselective C–C Bond Formation via Organocobalt Species

Ministry of Education Singapore (MOE2016-T2-2-043)
Weitere Informationen

Publikationsverlauf

Received: 27. Oktober 2018

Accepted: 05. November 2018

Publikationsdatum:
03. Dezember 2018 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.

1 Introduction

2 Hydrovinylation

3 C–H Functionalization

4 Cycloaddition and Cyclization

5 Addition of Carbon Nucleophiles

6 Cross-Coupling

7 Conclusion

 
  • References

  • 1 Pellissier H, Clavier H. Chem. Rev. 2014; 114: 2775
  • 2 Pellissier H. Coord. Chem. Rev. 2018; 360: 122
    • 3a Hilt G, du Mesnil FX, Luers S. Angew. Chem. Int. Ed. 2001; 40: 387
    • 3b Hilt G, Luers S. Synthesis 2002; 609
    • 3c Hilt G, Danz M, Treutwein J. Org. Lett. 2009; 11: 3322
    • 3d Hilt G, Treutwein J. Chem. Commun. 2009; 1395
    • 3e Arndt M, Dindaroglu M, Schmalz HG, Hilt G. Org. Lett. 2011; 13: 6236
    • 4a Grutters MM. P, Muller C, Vogt D. J. Am. Chem. Soc. 2006; 128: 7414
    • 4b Grutters MM. P, van der Vlugt JI, Pei YX, Mills AM, Lutz M, Spek AL, Muller C, Moberg C, Vogt D. Adv. Synth. Catal. 2009; 351: 2199
  • 5 Sharma RK, RajanBabu TV. J. Am. Chem. Soc. 2010; 132: 3295
  • 6 Page JP, RajanBabu TV. J. Am. Chem. Soc. 2012; 134: 6556
  • 7 Timsina YN, Sharma RK, RajanBabu TV. Chem. Sci. 2015; 6: 3994
  • 8 Biswas S, Page JP, Dewese KR, RajanBabu TV. J. Am. Chem. Soc. 2015; 137: 14268
  • 9 Movahhed S, Westphal J, Dindaroğlu M, Falk A, Schmalz H.-G. Chem. Eur. J. 2016; 22: 7381
  • 10 Jing SM, Balasanthiran V, Pagar V, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2017; 139: 18034
  • 11 Pagar VV, RajanBabu TV. Science 2018; 361: 68
    • 12a Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 12b Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 12c Wei D, Zhu X, Niu J.-L, Song M.-P. ChemCatChem 2016; 8: 1242
    • 12d Kommagalla Y, Chatani N. Coord. Chem. Rev. 2017; 350: 117
    • 12e Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
  • 13 Yang J, Yoshikai N. J. Am. Chem. Soc. 2014; 136: 16748
    • 14a Kundu K, McCullagh JV, Morehead AT. J. Am. Chem. Soc. 2005; 127: 16042
    • 14b Phan DH. T, Kim B, Dong VM. J. Am. Chem. Soc. 2009; 131: 15608
  • 15 Yang J, Rerat A, Lim YJ, Gosmini C, Yoshikai N. Angew. Chem. Int. Ed. 2017; 56: 2449
  • 16 Kim DK, Riedel J, Kim RS, Dong VM. J. Am. Chem. Soc. 2017; 139: 10208
    • 17a Park J.-W, Kou KG. M, Kim DK, Dong VM. Chem. Sci. 2015; 6: 4479
    • 17b Park J.-W, Chen Z, Dong VM. J. Am. Chem. Soc. 2016; 138: 3310
  • 18 Lee P.-S, Yoshikai N. Org. Lett. 2015; 17: 22
  • 19 Zell D, Bursch M, Muller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
  • 20 Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; DOI: 10.1002/anie.201808595.
    • 21a Vollhardt KP. C. Angew. Chem. Int. Ed. Engl. 1984; 23: 539
    • 21b Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 21c Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 22a Brummond KM, Kent JL. Tetrahedron 2000; 56: 3263
    • 22b Gibson SE, Stevenazzi A. Angew. Chem. Int. Ed. 2003; 42: 1800
    • 22c Lee H.-W, Kwong F.-Y. Eur. J. Org. Chem. 2010; 789
    • 23a Lautens M, Lautens JC, Smith AC. J. Am. Chem. Soc. 1990; 112: 5627
    • 23b Lautens M, Tam W, Lautens JC, Edwards LG, Crudden CM, Smith AC. J. Am. Chem. Soc. 1995; 117: 6863
    • 24a Brunner H, Muschiol M, Prester F. Angew. Chem. Int. Ed. Engl. 1990; 29: 652
    • 24b Brunner H, Prester F. J. Organomet. Chem. 1991; 414: 401
    • 25a Pardigon O, Buono G. Tetrahedron: Asymmetry 1993; 4: 1977
    • 25b Pardigon O, Tenaglia A, Buono G. J. Org. Chem. 1995; 60: 1868
    • 25c Pardigon O, Tenaglia A, Buono G. J. Mol. Catal. A: Chem. 2003; 196: 157
  • 26 Lautens M, Tam W, Sood C. J. Org. Chem. 1993; 58: 4513
  • 27 Toselli N, Martin D, Achard M, Tenaglia A, Burgi T, Buono G. Adv. Synth. Catal. 2008; 350: 280
  • 28 Hilt G, Hess W, Harms K. Org. Lett. 2006; 8: 3287
    • 29a Hiroi K, Watanabe T, Kawagishi R, Abe I. Tetrahedron Lett. 2000; 41: 891
    • 29b Hiroi K, Watanabe T, Kawagishi R, Abe I. Tetrahedron: Asymmetry 2000; 11: 797
    • 29c Sturla SJ, Buchwald SL. J. Org. Chem. 2002; 67: 3398
    • 29d Schmid TM, Consiglio G. Tetrahedron: Asymmetry 2004; 15: 2205
    • 30a Verdaguer X, Moyano A, Pericas MA, Riera A, Maestro MA, Mahia J. J. Am. Chem. Soc. 2000; 122: 10242
    • 30b Verdaguer X, Pericas MA, Riera A, Maestro MA, Mahia J. Organometallics 2003; 22: 1868
    • 30c Lledo A, Sola J, Verdaguer X, Riera A, Maestro MA. Adv. Synth. Catal. 2007; 349: 2121
    • 30d Ji Y, Riera A, Verdaguer X. Org. Lett. 2009; 11: 4346
    • 30e Sola J, Reves M, Riera A, Verdaguer X. Angew. Chem. Int. Ed. 2007; 46: 5020
    • 31a Gutnov A, Heller B, Fischer C, Drexler HJ, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. Int. Ed. 2004; 43: 3795
    • 31b Hapke M, Kral K, Fischer C, Spannenberg A, Gutnov A, Redkin D, Heller B. J. Org. Chem. 2010; 75: 3993
  • 32 Heller B, Gutnov A, Fischer C, Drexler HJ, Spannenberg A, Redkin D, Sundermann C, Sundermann B. Chem. Eur. J. 2007; 13: 1117
  • 33 Jungk P, Taufer T, Thiel I, Hapke M. Synthesis 2016; 48: 2026
  • 34 Jungk P, Fischer F, Hapke M. ACS Catal. 2016; 6: 3025
  • 35 Orgue S, Leon T, Riera A, Verdaguer X. Org. Lett. 2015; 17: 250
  • 36 Garcon M, Cabre A, Verdaguer X, Riera A. Organometallics 2017; 36: 1056
  • 37 Wu CL, Yoshikai N. Angew. Chem. Int. Ed. 2018; 57: 6558
  • 38 Yu S, Wu C, Ge S. J. Am. Chem. Soc. 2017; 139: 6526
  • 39 Wang C, Ge S. J. Am. Chem. Soc. 2018; 140: 10687
  • 40 Chang H.-T, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2007; 13: 4356
  • 41 Karthikeyan J, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2010; 16: 8989
  • 42 Nishimura T, Sawano T, Ou KY, Hayashi T. Chem. Commun. 2011; 10142
  • 43 Sawano T, Ashouri A, Nishimura T, Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936
  • 44 Sawano T, Ou K, Nishimura T, Hayashi T. Chem. Commun. 2012; 6106
  • 45 Huang Y, Ma C, Lee YX, Huang R.-Z, Zhao Y. Angew. Chem. Int. Ed. 2015; 54: 13696
  • 46 Huang Y, Huang R.-Z, Zhao Y. J. Am. Chem. Soc. 2016; 138: 6571
  • 47 Wu L, Shao Q, Yang G, Zhang W. Chem. Eur. J. 2018; 24: 1241
  • 48 Chen M.-H, Hsieh J.-C, Lee Y.-H, Cheng C.-H. ACS Catal. 2018; 8: 9364
  • 50 Hammann JM, Hofmayer MS, Lutter FH, Thomas L, Knochel P. Synthesis 2017; 49: 3887
  • 51 Mao J, Liu F, Wang M, Wu L, Zheng B, Liu S, Zhong J, Bian Q, Walsh PJ. J. Am. Chem. Soc. 2014; 136: 17662
  • 52 Liu F, Zhong J, Zhou Y, Gao Z, Walsh PJ, Wang X, Ma S, Hou S, Liu S, Wang M, Wang M, Bian Q. Chem. Eur. J. 2018; 24: 2059
    • 53a Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 53b Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
    • 53c Friedfeld MR, Zhong H, Ruck RT, Shevlin M, Chirik PJ. Science 2018; 360: 888
    • 53d Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
    • 54a Yan J, Yoshikai N. ACS Catal. 2016; 6: 3738
    • 54b Yang J, Shen Y, Lim YJ, Yoshikai N. Chem. Sci. 2018; 9: 6928
    • 55a Wei C.-H, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2011; 133: 6942
    • 55b Wei C.-H, Mannathan S, Cheng C.-H. Angew. Chem. Int. Ed. 2012; 51: 10592