Synthesis 2019; 51(04): 921-932
DOI: 10.1055/s-0037-1610664
paper
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free, Metal-Free, and Chemoselective Transamidation of Activated Secondary Amides

Rajagopal Ramkumar
,
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India   Email: scn@iisc.ac.in
› Author Affiliations
R.R. thanks the University Grants Commission, India for a fellowship under Dr. D. S. Kothari Postdoctoral Scheme (No. CH/14-15/0132). SCN thanks Indian National Science Academy, New Delhi for the award of INSA Distinguished Professorship.
Further Information

Publication History

Received: 04 September 2018

Accepted after revision: 21 September 2018

Publication Date:
18 October 2018 (online)


Abstract

A simple protocol, which is catalyst-free, metal-free, and chemoselective, for transamidation of activated secondary amides in ethanol as solvent under mild conditions is reported. A wide range of amines, amino acids, amino alcohols, and the substituents, which are problematic in catalyzed transamidation, are tolerated in this methodology. The transamidation reaction was successfully extended to water as the medium as well. The present methodology appears to be better than the other catalyzed transamidations reported recently.

Supporting Information

 
  • References

    • 1a Zabicky J. The Chemistry of Amides . Wiley-VCH; New York: 1970
    • 1b Greenberg A. Breneman CM. Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. Wiley; New York: 2003
    • 2a Cheung CW. Ploeger ML. Hu X. Nat. Commun. 2017; 8: 14878
    • 2b de Figueiredo RM. Suppo J.-S. Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 2c Hudlicky T. Reed JW. The Way of Synthesis: Evolution of Design and Methods for Natural Products . Wiley-VCH; Weinheim: 2007
    • 2d Corey EJ. Cheng X.-M. The Logic of Chemical Synthesis . Wiley-VCH; Weinheim: 1995
    • 3a Pattabiraman VR. Bode JW. Nature 2011; 480: 471
    • 3b Ojeda-Porras A. Gamba-Sanchez D. J. Org. Chem. 2016; 81: 11548
    • 3c Aubé J. Angew. Chem. Int. Ed. 2012; 51: 3063
    • 3d Allen AC. Atkinson BN. Williams JM. Angew. Chem. Int. Ed. 2012; 51: 1383
    • 3e Pauling L. Corey RB. Branson HR. Proc. Natl. Acad. Sci. U. S. A. 1951; 37: 205
    • 4a Dineen TA. Zajac MA. Myers AG. J. Am. Chem. Soc. 2006; 128: 16406
    • 4b Becerra-Figueroa L. Ojeda-Porras A. Gamba-Sánchez DJ. J. Org. Chem. 2014; 79: 4544
    • 4c Rao SN. Mohan DC. Adimurthy S. Green Chem. 2014; 16: 4122
    • 4d Jia M. Zhang H. Lin Y. Chen D. Chen Y. Xia Y. Org. Biomol. Chem. 2018; 16: 3615
    • 4e Tani H. Oguni N. Araki T. Bull. Chem. Soc. Jpn. 1964; 37: 1245
    • 4f Piazzolla F. Temperini A. Tetrahedron Lett. 2018; 59: 2615
    • 5a Cheung CW. Ma J.-A. Hu X. J. Am. Chem. Soc. 2018; 140: 6789
    • 5b Nguyen TB. Sorres J. Tran MQ. Ermolenko L. Al-Mourabit A. Org. Lett. 2012; 14: 3202
    • 5c Rao SN. Mohan DC. Adimurthy S. Org. Lett. 2013; 15: 1496
    • 5d Stephenson NA. Zhu J. Gellman SH. Stahl SS. J. Am. Chem. Soc. 2009; 131: 10003
    • 6a Eldred SE. Stone DA. Gellman SH. Stahl SS. J. Am. Chem. Soc. 2003; 125: 3422
    • 6b Bon E. Bigg DC. H. Bertrand G. J. Org. Chem. 1994; 59: 4035
    • 7a Baker EL. Yamano MM. Zhou Y. Anthony SM. Garg NK. Nat. Commun. 2016; 7: 11554
    • 7b Dander JE. Baker EL. Garg NK. Chem. Sci. 2017; 8: 6433
    • 7c Boit TB. Weires NA. Kim J. Garg NK. ACS Catal. 2018; 8: 1003
    • 7d Medina JM. Moreno J. Racine S. Du S. Garg NK. Angew. Chem. Int. Ed. 2017; 56: 6567
    • 8a Liu Y. Shi S. Achtenhagen M. Liu R. Szostak M. Org. Lett. 2017; 19: 1614
    • 8b Liu Y. Achtenhagen M. Liu R. Szostak M. Org. Biomol. Chem. 2018; 16: 1322
    • 8c Meng G. Lei P. Szostak MA. Org. Lett. 2017; 19: 2158
    • 8d Shi S. Szostak M. Chem. Commum. 2017; 53: 10584
    • 8e Li G. Lei P. Szostak M. Casals-Cruañas E. Poater A. Cavallo L. Nolan SP. ChemCatChem 2018; 10: 3096
    • 8f Meng G. Szostak M. Eur. J. Org. Chem. 2018; 2352
    • 8g Bisz E. Piontek A. Dziuk B. Szostak R. Szostak M. J. Org. Chem. 2018; 83: 3159
    • 8h Szostak R. Szostak M. Org. Lett. 2018; 20: 1342
    • 9a Greenberg A. Venanzi CA. J. Am. Chem. Soc. 1993; 115: 6951
    • 9b Greenberg A. Moore DT. DuBois TD. J. Am. Chem. Soc. 1996; 118: 8658
    • 9c Szostak R. Meng G. Szostak M. J. Org. Chem. 2017; 82: 6373
    • 9d Kirby AJ. Komarov IV. Wothers PD. Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
    • 9e Szostak R. Shi S. Meng G. Lalancette R. Szostak M. J. Org. Chem. 2016; 81: 8091
    • 9f Pace V. Holzer W. Meng G. Shi S. Lalancette R. Szostak R. Szostak M. Chem. Eur. J. 2016; 22: 14494
    • 9g Szostak R. Aubé J. Szostak M. Chem. Commun. 2015; 51: 6395
    • 10a Hie L. Nathel NF. F. Hong X. Yang YF. Houk KN. Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810
    • 10b Pu X. Hu J. Zhao Y. Shi Z. ACS Catal. 2016; 6: 6692
    • 10c Hie L. Baker EL. Anthony SM. Desrosiers JN. Senanayake C. Garg NK. Angew. Chem. Int. Ed. 2016; 55: 15129
  • 11 While our manuscript was in preparation, Verho reported a two-step procedure for the transamidation of 8-aminoquinoline amides proceeding via the intermediate N-acyl-Boc-carbamates: Verho O. Lati MP. Oschmann MA. J. Org. Chem. 2018; 83. 4464
  • 12 Xuan J. Li B.-J. Feng Z.-J. Sun G.-D. Ma H.-H. Yuan Z.-W. Chen J.-R. Lu L.-Q. Xiao W.-J. Chem. Asian J. 2013; 8: 1090
  • 13 Xu S. Liu J. Hu D. Bi X. Green Chem. 2015; 17: 184
  • 14 Wang C. Huang L. Wang F. Zou G. Tetrahedron Lett. 2018; 59: 2299
  • 15 Ovian JM. Kelly CB. Pistritto VA. Leadbeater NE. Org. Lett. 2017; 19: 1286
  • 16 Maji M. Chakrabarti K. Paul B. Roy BC. Kundu S. Adv. Synth. Catal. 2018; 360: 722
  • 17 Takahata H. Yamazaki T. J. Org. Chem. 1985; 50: 4648
  • 18 Qiu F. Yang W. Chang Y. Guan B. Asian J. Org. Chem. 2017; 6: 1361
  • 19 Braddock DC. Lickiss PD. Rowley BC. Pugh D. Purnomo T. Santhakumar G. Fussell SJ. Org. Lett. 2018; 20: 950
  • 20 Kovalenko OO. Volkov A. Adolfsson H. Org. Lett. 2015; 17: 446
  • 21 Lee HJ. Lee JI. J. Korean Chem. Soc. 2017; 61: 286
  • 22 Yuan YC. Kamaraj R. Bruneau C. Labasque T. Roisnel T. Gramage DR. Org. Lett. 2017; 19: 6404
  • 23 Wang J. Yin X. Wu J. Wu D. Pan Y. Tetrahedron 2013; 69: 10463
  • 24 Kumar V. Connon SJ. Chem. Commun. 2017; 53: 10212
  • 25 Vanos CM. Lambert TH. Chem. Sci. 2010; 1: 705
  • 26 Olivo G. Farinelli G. Barbieri A. Lanzalunga O. Di Stefano S. Costas M. Angew. Chem. Int. Ed. 2017; 56: 16347
  • 27 Kim H. Shin K. Chang S. J. Am. Chem. Soc. 2014; 136: 5904
  • 28 Prosser AR. Banning JE. Rubina M. Rubin M. Org. Lett. 2010; 12: 3968
  • 29 Metrano AJ. Miller SJ. J. Org. Chem. 2014; 79: 1542
  • 30 Mugherli L. Burchak ON. Balakireva LA. Thomas A. Chatelain F. Balakirev MY. Angew. Chem. Int. Ed. 2009; 48: 7639
  • 31 Karnik AV. Kamath SS. J. Org. Chem. 2007; 72: 7435
  • 32 Gu JJ. Fang Z. Liu CK. Yang Z. Li X. Wei P. Guo K. RSC Adv. 2015; 5: 95014